Web Security

by Tom Van Goethem

DistriN=t

Web security

history, evolution & future

The Web: history

~

Designed many years ago
» Primary purpose: static information retrieval

~

Many evolutions over time
» Static -> dynamic
» No authentication -> cookies
» Server -> client
» New web APIs

~

Let's allows anyone to run code in our browser; what could possibly
go wrong?

~

Let's include cookies in all requests; what could possibly go wrong?

The Web: evolution

New features allow new use cases
» Without cookies, the web would have looked very differently

~

~

Usually it takes some time before issues surface
» At design-time: possible issues not present/insignificant
» As the web evolves: issues appear or become significant

~

Very hard to take features out of the web platform
» Many parties already rely on these features
» Browsers don't want to break websites

~

New features hard to make future-proof
» Difficult to predict how the web will evolve & which other features will be added

~

Web-security: whack-a-mole

Web security: the future?

> New security features are added

» Mainly through request/response headers

» Some effort to have security by design: e.g. trusted types
» Protects against DOM-based XSS

» Example: HTTP state tokens to replace cookies

» Sliic:entlcontrols token value, not accessible from JS, HTTPS only, same-site only, non-persistent by
efault

> New web APIs are constantly being added
» Usually introduces unexpected side-effects (e.g. <portal>)

» Existing features are being changed

» Cookies: Chrome will make it SameSite by default (how it should have
been from the beginning)

Web security

Web vulnerabilities

Web vulnerabilities

» Server-side
» Attacker interacts directly with the server

» Client-side

» Attacker tricks the victim to interact in unexpected ways with the
server

Web vulnerabilities

Server-side Client-side

|

Web vulnerabilities

Server-side

Client-side

SQL injection

Insecure direct object references
(IDOR)

Command injection

Server-side request forgery (SSRF)
XML external entities (XXE)
Remote/Local file inclusion (RFI/LFI)
Unsafe deserialization

Timing attacks

Cross-site scripting (XSS)

Clickjacking
Cross-site request forgery (CSRF)

HTTP response splitting

Open redirect

CORS misconfiguration
Authentication issues
Cross-site script inclusion (XSSI)
XSLeaks

Server-side web vulnerabilities

Server-side web vulnerabilities

SQL injection

Server-side: SQL injection

» Attacker injects content in the SQL query
» Changes syntax of the query

» Sname = $ GET['name']
Squery = "SELECT name FROM users
WHERE name = '$name' ";

y ?2name=x' OR name 'admin

12

Server-side: SQL injection

~

Also applies to NoSQL queries

~

Difficulty of exploitation can differ
» Straightforward: parameter used in WHERE statement

» More difficult: unable to observe response; need to rely on side-channel
information, e.g. SLEEP(1)

Can be difficult to detect
» Second-order: injected content is first stored in DB

~

~

Affects many major web applications

» |In 2014, all Drupal installations were found to be vulnerable
(Drupalgeddon

13

Server-side: SQL injection

» Defense: escape all user input

» Not recommended: developer may forget, unclear what to do for
dynamically generated queries

» Defense: prepared statements
» When done correctly, much harder to make mistakes

» Recommended!

» String query = "SELECT name FROM users WHERE name = ?";
PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, request.getParameter("name"));

14

Server-side web vulnerabilities

Server-side Request Forgery (SSRF)

Server-side: server-side request forgery

» Attacker triggers the targeted server to send a request to an
arbitrary endpoint

» Can be used to extract sensitive information from the system

» Example: AWS keys may be extracted
» Metadata accessible from http://169.254.169.254/
» http://169.254.169.254/latest/meta-data/iam/security-credentials/...

» Some (internal) databases provide REST interfaces
» Attacker can leak information from internal services

16

Server-side: server-side request forgery

» Defense: perform input validation
» Can be tricky because of URL parsing inconsistencies
» Where does this request go to? https://evil.com\@good.com/
» What about this one? https://evil.com\[good.com]/
» And this one? http://2852039166
» And what about the many many more examples

> Be conservative in what you allow!
» input.startswith('https://good.com/ ")

17

Server-side web vulnerabilities

Unsafe deserialization

Server-side: Unsafe deserialization

» Many programming languages allow (de)serialization of objects
» Java, Python, PHP, Ruby, ...

» Deserialization: transforming string back into an object
» Dangerous when string is controlled by attacker

» Special functions may be called during deserialization or during
object lifetime

» Can be abused to perform unintended actions on arbitrary objects

» Exploitation typically requires “gadgets” from other code

19

Server-side: Unsafe deserialization

» Can lead to remote code execution
» Depends on code available during execution
» Tool for Java: ysoserial

» Defense
» Do not use programming language's object serialization
» Use e.g. JSON instead

> Real-world vulnerability: WordPress < 3.6.0 (2013)

20

Server-side: Unsafe deserialization

» WordPress cached meta-information in database

» write -> maybe_serialize(): serialize if object or array, or
is_serialized(string) returns true => double serialization (for compat.)

» read -> maybe_unserialize(): unserialize if is_serialized(string) returns
false

> What do we need for a vulnerability?
FALSE;

» 1s serialized($str) ==
write to db($str);
$str 2 = read from db();
1s serialized($str 2) =

I~
Il

TRUE ;

21

Server-side: Unsafe deserialization

» 1s_serialized($str)

» returns TRUE if Sstr starts with s/a/O/b/i/d (string, array, bool, ...) and Sstr
ends with ; or }

» Trick: use "special" UTF-8 characters

» WordPress uses MySQL by default, with a collation set to "utf8"

» MySQL's utf8 does not support all of utf8, only "base plane": code points
U+000000 until U+OOFFFF

» When inserting character outside of base plane: MySQL drops character
and everything after it (only a warning)

Example: &
For full UTF-8 support: use utf8mb4

N

)

N~

)

N~

22

Server-side: Unsafe deserialization

» Payload:

» Sstr = '0:3:"Foo" :O:{}@'

» is serialized($str) === FALSE (does not end with })
» $str 2 = 0:3:"Foo":0:{}

» 1s _serialized($str 2) === TRUE (ends with })

» =>a new Foo object is created
» destruct(), toString(), wakeup() are called

23

Server-side: Unsafe deserialization

» Exploitation:
» No gadgets available in WordPress base
» Many installations use plugins! Gadgets galore!
» Example: Lightbox Plus ColorBox (contains no specific vulnerabilities)
» Results in remote code execution

24

<?php
class simple html dom node {
private S$dom;
public function _ construct() {
Scallback = array(new WP _Screen(), 'render screen meta');

Sthis->dom = (object) array('callback' => $callback);

}

class WP _Screen {

private $ help tabs;

public S$action;

function _ construct() {
$count = array('count' => 'echo "h4x3d" > /tmp/hacked');
Sthis->action = (object) $count;
$this-> help tabs = array(array(

'callback' => 'wp generate tag cloud'’,

'topic count scale callback' => 'shell exec'));

}

echo serialize(new simple html dom node()).'& ';

2>

Server-side: Unsafe deserialization

» Alternative:
» Abuse PHP’s SimpleXML module
» Exploit leverages classes from WordPress core + SimpleXML
» Triggers unsafe operations on XML objects
» Causes an XML External Entities vulnerability
» Leak file content from web server (e.g. wp-config.php)
» Works on all installations that have the SimpleXML module

26

Server-side web vulnerabilities

XML External Entities

Server-side: XML External Entities (XXE)

» Vulnerability exists when parsing attacker-provided XML

» Attacker includes external entity that refers to specific endpoint

» <?xml version="1.0" encoding="IS0-8859-1"?>
<!DOCTYPE foo |
<!ELEMENT foo ANY>
<!ENTITY xxe SYSTEM "file:///etc/password">
1>
<foo>&xxe;</foo>

28

Server-side: XML External Entities (XXE)

» Attacker can read out arbitrary files
» Possible to perform SSRF attacks through XXE

> More advanced attack techniques possible: e.g. out-of-band

» When attacker can not read out XXE response directly
» Triggers request with file content to attacker server

» Defense: disable external entities in XML parser

29

Client-side web vulnerabilities

Client-side web security

Same-Origin Policy

document.body.textContent

fetch() XHR

postMessage ()

Client-side: same-origin policy

» siteA can not access any content/cookies from siteB

» To interact, siteA can send postMessage () to siteB who
listens for messages via
window.addEventListener('message’', handler)

» siteA can send a request to siteB, but should not be able to
obtain any information about the response

» Side-channel information may still be available (see: XSLeaks)

33

Client-side: security feature delivery

GET /index.html
User-Agent: Firefox

Accept: text/html
—

\ 200 OK
.f’ Content-Type: text/html

Strict-Transport-Security:
max-age=631138519

g

enforce

35

Client-side web vulnerabilities

Cross-site Scripting

Client-side: cross-site scripting

» XSS is caused by injecting attacker-controlled content into web
page without proper encoding

» < should be encoded as &1t;

» Malicious content can originate from request
(parameter/referrer/...), or database (reflected vs persistent)

» Content may be written dynamically in JavaScript or generated
on the server side (DOM-based vs server-side)

» Attacker can run arbitrary content on web page: steal cookies,
take over entire website, ...

37

Client side: cross-site scripting

Reflected Persistent

print('Hello %s' % |print('Comment: %s' $
)

Server-side params.name) db.getComment ())

el.innerHTML = 'a' + | el.innerHTML = 'a' +
DOM-based location.hash localStorage.getItem('b')

38

Client side: cross-site scripting

» Many defenses

» Correctly encode dynamic content (based on context: different
encoding is needed for element attribute vs element content

» Several defenses try to minimize consequences, or make exploitation
more difficult

» HttpOnly cookies: cookies with this attribute can not be read from JS
» X-XSS-Protection: Chrome has built-in detection for reflected XSS
» Content-Security-Policy: define where JavaScript can originate from

» CSP v3: strict-dynamic + nonce => all scripts with random nonce are
loaded, these can dynamically load new scripts

» Trusted types: defends against DOM-based XSS by design

39

Client-side web vulnerabilities

Cross-site Request Forgery

Client-side: cross-site request forgery

)

Attacker makes victim's browser send a request to target site
» Victim's cookie for target site is included

~

Target site processes request in name of the victim

» Target site can not differentiate legitimate requests from attacker-
triggered request

~

Defense: require + validate randomly generated token in form
» Token can not be guessed by the attacker; if incorrect: abort operation

~

Defense: SameSite cookie (becomes default in Chrome soon)
» Cookie with SameSite attribute is not sent for cross-site requests

41

example.com

attacker.com

fetch("https://example.com/change-password",

{
method: "POST",

body: "new password=h4x0r3d",
mode: "no-cors',

credentials: "include”

) ;7

Client-side web vulnerabilities

XSLeaks

Client-side: XSLeaks

» Cross-site leaks: obtain side-channel information of cross-origin
resource

» Same attack scenario as with CSRF
» Victim executes JS on attacker.com

» Types of side-channel information
» Size, web page has iframe, response status

> Response from website depends on state of the user
» Attacker can infer this state

44

May leak informatio

e

c

< c

& https://twitter.com

[BON J ¥ Twitter X -+

& https://twitter.com

° Home

Q Notifications

£ Messages L 4

Search Twitter

= = A 1) \

[BON] 3 Twitter. It's what's happening. X +

Phone, email, or username Password

X L

‘ What’s happening? @

1 Tom Van Goethem Retweeted

SecAppDev @SecAppDev - Jan 15 v
With @tomvangoethem we complete the lineup of speakers for SecAppDev

Who Left Open The...

@WLOTCJ 2019. Tom will talk about his work at @DistriNet on cookie security policies in
Tweets Following Followers Er:fm:s/er:u h’\z‘)w N;(o circumvent them, and what to take into account.
uff.ly/2 c
12 2 72 i

SPEAKER

Tom VAN GOETHEM

PhD researcher, KU Leuven

Trends for you - change

#YouthForClimate
5,061 Tweets

Web security, browser-based side-channel attacks,

Ariana Grande large-scale security evaluations

100K Tweets

#7Rings
246K Tweets

s SecAppDev 2019
b

euven (Belgium)

#MART
23K Tweets

Dhoni
70.5K Tweets O

#AqoursE BT AF
26.7K Tweets

0 4

Q7 (]

Wix.com @ @Wix - 24 Jan 2018 v

#TwitartirAgnldi WiX When it comes to building your website - it's smooth sailing.

#karnegiinii
15.6K Tweets o

#enem
20.8K Tweets

#BuenViernes

5,349 Tweets
Py

See what’s happening in
the world right now

Join Twitter today.

Sneak a peek at the new

Twitter (Log in

Bookmarks, night mode, data saver,
and more — see all the new features
coming to the web.

Take a look

Who to follow - Refresh - View all
juraj somorovsky @jurajs...

Branc Apr Advertise Ma

. Icamtuf @lcamtuf
Mario Gomes @netfuzzer
o

22 Find people you know

~19kB

© 2019 Twitter About Help Center Terms
Privacy policy Cookies Ads info Brand
Blog Status Apps Jobs Marketing

~183kB

([} [D4 Search results - tomvangoethe X +

May

o ([J DM Search results - tomvangoethe X ’

S e (S C @ https://mail.google.com/mail/u/O/#search/credit+card+5399 ® w {8 : 1-10f1 M- 0
— . . T F 02/10/2012
= |V| Gmail Q_ credit card 5399 X v i @ ' /10/

Oo- ¢ : E R o
I— Compose
Q_ No messages matched your search. Try using search options such as sender, date, size and more.
[J Inbox 3
Y Starred (/]
© Ssnoozed
> Sent
B Drafts 37 N
All Mail
® [Imap]/Trash
B Bugzilla
7 Tom
e +
Last account activity: 6 minutes ago
Details
7.58 GB (50%) of 15 GB used Terms - Privacy - Programme Policies Last account activity: 6 minutes ago
Manage Details
Make a call b

Also try our mobile apps for Android and
ios

2 @ ’

Gelernter, Nethanel, and Amir Herzberg. "Cross-site search attacks." Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2015.

e l k I n fO rI I . C @ https://mail.google.com/mail/u/0/#search/credit+card+5398 ® FB

Client-side: XSLeaks

» XS-Search is an instance of XSLeaks
» Abuses search functionality of target site
» Leverages either processing time or response size
» May try to perform response (size/time) inflation

» search(keyword) returns 1/0 results

» Response inflation: 1 result will be repeated many times
» Response time leaks whether 1 or O results were returned

» Search for secret string character by character

47

Client-side: XSLeaks

» Techniques to leak response size:
» Web timing
» Browser timing

» Browser storage quota
TCP windows (HEIST)

)

~

» Other leaking vectors:
» Frame count
» Number of redirects
» Error events: response status

» XSS filter: presence of JS code
)) eee

N~

48

Client-side web vulnerabilities

XSLeaks: web/browser timing

Cross-site timing attacks [1]

 State-dependent content

A
I

example.com

G
o 7 amstak i
;{/Z 7 é:;;” s f/;éjﬁgééff/é;;%;ﬁ
-, - - -
.
Start timer ->
- ;
Stop timer > =

{img src="https://example. com/index. hmt1l">

L error event

[1] Bortz et al. 2007. Exposing private information by timing web applications. In Proceedings of the 16th international conference on
World Wide Web (WWW '07). ACM, New York, NY, USA, 621-628.

Il

victim attacker.com example.com

suspend

Start timer - I+

Browser-based timing attacks [1]

a {video src="https://example. com/index. hmt1l">

° Q - Abuse of firing events during parsing process

| error - suspend when fetched
Stop timer — .
- error on fail

[1] Van Goethem et al. The Clock is Still Ticking: Timing Attacks in the Modern Web. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS '15). ACM, New York, NY, USA, 1382-1393.

XSLeaks: Cache Storage Attack

let url = 'https://example.org/resource’;
let opts = {credentials: "include", mode: '"no-cors'"};
let request = new Request(url, opts);
let bogusReq = new Request('/bogus');
fetch(request).then(function(resp) {

// Resource download complete

start = window.performance.now() ;

return cache.put(bogusReq, resp.clone())
}) .then(function() {

// Resource stored in cache

end = window.performance.now() ;

})s

Avg. time to perform timing attack (ms)

7500 -

5000 -

2500 -

0
—o— Classic timing attack |
—— \ideo parsing attack

I
0
0

- Cache storing attack
—+— Cache + video parsing

I I I I
25 50 75 100
Difference in file size (kB)

XSLeaks: Browser-based timing attacks

)

Can differentiate resource that differ few KB

~

Video parsing mechanisms already patched is several browsers
» New features may cause new side-channels (e.g. SRI, image parsing, ...)

~

Real-world attacks can be improved by using response inflation

» One result is repeated many times - difference in response size is
artificially enlarged

~

Attacks discovered in 2016; bug hunters starting to leverage
techniques

54

Searching Google's bug tr: X +

A Medium Corporation [US] | https://medium.com/@luanherrera/xs-searching-googles-bug-tracker-to-find-out-vulnerable-source-code-50d8135b7549

Medium Cybersecurity Q o e;:

XS-Searching Google’s bug tracker to
find out vulnerable source code

Or how side-channel timing attacks aren't that impractical

e Luan Herrera

Nov 19,2018 - 6 min read

Monorail is an open-source issue tracker used by many “Chromium-orbiting”
projects, including Monorail itself. Other projects include Angle, PDFium,
Gerrit, V8, and the Alliance for Open Media. It is also used by Project Zero,
Google’s 0-day bug-finding team.

This article is a detailed explanation of how I could have exploited Google’s

Monorail issue tracker to leak sensitive information (vulnerable source code

Client-side web vulnerabilities

XSLeaks: storage quota

XSLeaks: Abusing storage quota

» Each site (eTLD+1) has a specific quota
» IndexedDB, localStorage, ...
» Cross origin resources (!!!)

» When quota is reached, any attempt to store more is blocked

» Can be used to determine exact size of cross-origin resource

» Exact size --> defenses against response inflation do not work

57

Quota

Quota

Step 1: fill

Quota

Step 1: fill
Step 2: remove X

Quota

Step 1: fill
Step 2: remove X
Step 3: store resource

Step 1: fill
Step 2: remove X

Step 3: store resource
Step 4: fill

Quota

Step 1: fill

Step 2: remove X
Step 3: store resource
Step 4: fill

Step 5: x -y =SIZE

Quota

Client-side web vulnerabilities

XSLeaks: TCP windows (HEIST)

XSLeaks: HEIST

(HTTP Encrypted Information can be Stolen through TCP Windows)

» Determine exact response size (compressed)

» 1 TCP window = 10 TCP packets = 14480 bytes of data

» 2" TCP window can only start after ACK (--> additional round-trip)
» Response fits in 1 TCP window --> 1 RTT, otherwise 2+ RTTs

» Use side-channel to detect when headers are received
» fetch() promise resolves

» Use side-channel to detect when full response is received
» Cache API store + read

» Timing difference < 5ms --> 1 TCP window, otherwise 2 TCP windows

65

Response (14480 bytes)

15t TCP window

NN

15t TCP window

ASSSSNNNNNY

fetch() resolves cache store + read finishes

Timing difference

Response (14481 bytes)

15t TCP window 2" TCP window

NN

>
@)
A

15t TCP window 2" TCP window

/
i 11

SO e hN

fetch() resolves cache store + read finish

Timing difference (much bigger)

XSLeaks: HEIST

» Important prerequisite: reflection of request in response
» Needed to align on TCP window size

» Exact size is known after compression

» Allows for BREACH-like attack

72

Hello S GET['name'], your secret value is COSIC_COURSE

’name=Tom

gzip(He

==>

lo

Hel

Tom, your secret value is COSIC_COURSE)

o Tom, your secret value is COSIC_COURSE

?name=COS|
lo COSI, your secret value is COSIC_COURSE)

Hello COSI, your secret value is @-27,4C_COURSE

gzip(He

==>

?name=COSIx
gzip(Hello COSIx, your secret value is COSIC_COURSE)

==> Hello COSIx, you secret value is @-27,4C_COURSE
--> 42 bytes

?name=COSIC
gzip(Hello COSIC, your secret value is COSIC_COURSE)

==> Hello COSIC, you secret value is @-28,5 COURSE

--> 41 bytes

XSLeaks: HEIST

» Can be used to extract cross-origin secrets (CSRF tokens)

» Defense: disable compression for sensitive content

» https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-

web/

» Not widely deployed, requires regex to know what is sensitive

» Defense: refresh tokens after N requests
» Can be tricky + what about other sensitive content?

» Large-scale impact: to be explored

75

https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-web/

Client-side web vulnerabilities

XSLeaks: Defenses

XSLeaks: Defenses

» SameSite cookie (to prevent authenticated requests)
» Not sufficient: window.open ()

» Fetch-Metadata
» New feature (not yet implemented)

» Adds request headers to give web server information on how the
request was sent

» Cross-0Origin-Opener-Policy (COOP)
» New feature (not yet implemented)
» Reference to opened window becomes null => can not redirect

77

IELGENENR

Web vulnerabilities

Server-side

Client-side

SQL injection

Insecure direct object references
(IDOR)

Command injection

Server-side request forgery (SSRF)
XML external entities (XXE)
Remote/Local file inclusion (RFI/LFI)
Unsafe deserialization

Timing attacks

79

Cross-site scripting (XSS)

Clickjacking
Cross-site request forgery (CSRF)

HTTP response splitting

Open redirect

CORS misconfiguration
Authentication issues
Cross-site script inclusion (XSSI)
XSLeaks

IELGEVENR

> Web security covers both client-side and server-side

» New features often introduce new vulnerabilities

» Request remote content: SSRF

» Serialization: unsafe deserialization

» Browser quota: determine size

» Security should always be considered!

> Many defenses are available
» It is becoming increasingly difficult to correctly apply all consistently

80

N
o G
“@“ Questions?
|1

@tomvangoethem

DistriN=t

