
Web Security

1

by Tom Van Goethem

Web security

history, evolution & future

3

The Web: history

› Designed many years ago
Primary purpose: static information retrieval

› Many evolutions over time
Static -> dynamic
No authentication -> cookies
Server -> client
New web APIs

› Let's allows anyone to run code in our browser; what could possibly
go wrong?

› Let's include cookies in all requests; what could possibly go wrong?

4

The Web: evolution

› New features allow new use cases
Without cookies, the web would have looked very differently

› Usually it takes some time before issues surface
At design-time: possible issues not present/insignificant
As the web evolves: issues appear or become significant

› Very hard to take features out of the web platform
Many parties already rely on these features
Browsers don't want to break websites

› New features hard to make future-proof
Difficult to predict how the web will evolve & which other features will be added

› Web-security: whack-a-mole

5

Web security: the future?

› New security features are added
Mainly through request/response headers
Some effort to have security by design: e.g. trusted types

Protects against DOM-based XSS

Example: HTTP state tokens to replace cookies
Client controls token value, not accessible from JS, HTTPS only, same-site only, non-persistent by
default

› New web APIs are constantly being added
Usually introduces unexpected side-effects (e.g. <portal>)

› Existing features are being changed
Cookies: Chrome will make it SameSite by default (how it should have
been from the beginning)

Web security

Web vulnerabilities

7

Web vulnerabilities

› Server-side
Attacker interacts directly with the server

› Client-side
Attacker tricks the victim to interact in unexpected ways with the
server

8

Web vulnerabilities

Client-sideServer-side

9

Web vulnerabilities

› SQL injection
› Insecure direct object references

(IDOR)
› Command injection
› Server-side request forgery (SSRF)
› XML external entities (XXE)
› Remote/Local file inclusion (RFI/LFI)
› Unsafe deserialization
› Timing attacks

› Cross-site scripting (XSS)
› Clickjacking
› Cross-site request forgery (CSRF)
› HTTP response splitting
› Open redirect
› CORS misconfiguration
› Authentication issues
› Cross-site script inclusion (XSSI)
› XSLeaks

Client-sideServer-side

Server-side web vulnerabilities

Server-side web vulnerabilities

SQL injection

12

Server-side: SQL injection

› Attacker injects content in the SQL query
Changes syntax of the query

› $name = $_GET['name']
$query = "SELECT name FROM users

WHERE name = '$name' ";

› ?name=x' OR name = 'admin

13

Server-side: SQL injection

› Also applies to NoSQL queries
› Difficulty of exploitation can differ

Straightforward: parameter used in WHERE statement
More difficult: unable to observe response; need to rely on side-channel
information, e.g. SLEEP(1)

› Can be difficult to detect
Second-order: injected content is first stored in DB

› Affects many major web applications
In 2014, all Drupal installations were found to be vulnerable
(Drupalgeddon)

14

Server-side: SQL injection

› Defense: escape all user input
Not recommended: developer may forget, unclear what to do for
dynamically generated queries

› Defense: prepared statements
When done correctly, much harder to make mistakes
Recommended!
String query = "SELECT name FROM users WHERE name = ?";
PreparedStatement pstmt = connection.prepareStatement(query);
pstmt.setString(1, request.getParameter("name"));

Server-side web vulnerabilities

Server-side Request Forgery (SSRF)

16

Server-side: server-side request forgery

› Attacker triggers the targeted server to send a request to an
arbitrary endpoint

› Can be used to extract sensitive information from the system

› Example: AWS keys may be extracted
Metadata accessible from http://169.254.169.254/
http://169.254.169.254/latest/meta-data/iam/security-credentials/...

› Some (internal) databases provide REST interfaces
Attacker can leak information from internal services

17

Server-side: server-side request forgery

› Defense: perform input validation
Can be tricky because of URL parsing inconsistencies
Where does this request go to? https://evil.com\@good.com/
What about this one? https://evil.com\[good.com]/
And this one? http://2852039166
And what about the many many more examples

› Be conservative in what you allow!
input.startswith('https://good.com/')

Server-side web vulnerabilities

Unsafe deserialization

19

Server-side: Unsafe deserialization

› Many programming languages allow (de)serialization of objects

Java, Python, PHP, Ruby, …

› Deserialization: transforming string back into an object

Dangerous when string is controlled by attacker

› Special functions may be called during deserialization or during

object lifetime

Can be abused to perform unintended actions on arbitrary objects

› Exploitation typically requires “gadgets” from other code

20

Server-side: Unsafe deserialization

› Can lead to remote code execution
Depends on code available during execution

Tool for Java: ysoserial

› Defense
Do not use programming language's object serialization

Use e.g. JSON instead

› Real-world vulnerability: WordPress ≤ 3.6.0 (2013)

21

Server-side: Unsafe deserialization

› WordPress cached meta-information in database

write -> maybe_serialize(): serialize if object or array, or

is_serialized(string) returns true => double serialization (for compat.)

read -> maybe_unserialize(): unserialize if is_serialized(string) returns

false

› What do we need for a vulnerability?

is_serialized($str) === FALSE;
write_to_db($str);
$str_2 = read_from_db();
is_serialized($str_2) === TRUE;

22

Server-side: Unsafe deserialization

› is_serialized($str)
returns TRUE if $str starts with s/a/O/b/i/d (string, array, bool, …) and $str
ends with ; or }

› Trick: use "special" UTF-8 characters
WordPress uses MySQL by default, with a collation set to "utf8"
MySQL's utf8 does not support all of utf8, only "base plane": code points
U+000000 until U+00FFFF
When inserting character outside of base plane: MySQL drops character
and everything after it (only a warning)

Example: !
For full UTF-8 support: use utf8mb4

23

Server-side: Unsafe deserialization

› Payload:
$str = 'O:3:"Foo":0:{}!'
is_serialized($str) === FALSE (does not end with })
$str_2 = O:3:"Foo":0:{}
is_serialized($str_2) === TRUE (ends with })

=> a new Foo object is created
__destruct(), __toString(), __wakeup() are called

24

Server-side: Unsafe deserialization

› Exploitation:
No gadgets available in WordPress base
Many installations use plugins! Gadgets galore!
Example: Lightbox Plus ColorBox (contains no specific vulnerabilities)
Results in remote code execution

26

Server-side: Unsafe deserialization

› Alternative:
Abuse PHP’s SimpleXML module
Exploit leverages classes from WordPress core + SimpleXML
Triggers unsafe operations on XML objects
Causes an XML External Entities vulnerability
Leak file content from web server (e.g. wp-config.php)
Works on all installations that have the SimpleXML module

Server-side web vulnerabilities

XML External Entities

28

Server-side: XML External Entities (XXE)

› Vulnerability exists when parsing attacker-provided XML

› Attacker includes external entity that refers to specific endpoint
› <?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [

<!ELEMENT foo ANY>
<!ENTITY xxe SYSTEM "file:///etc/password">

]>
<foo>&xxe;</foo>

29

Server-side: XML External Entities (XXE)

› Attacker can read out arbitrary files

› Possible to perform SSRF attacks through XXE

› More advanced attack techniques possible: e.g. out-of-band
When attacker can not read out XXE response directly
Triggers request with file content to attacker server

› Defense: disable external entities in XML parser

Client-side web vulnerabilities

Client-side web security

Same-Origin Policy

SiteA SiteB

postMessage()

fetch() XHR

document.body.textContent

33

Client-side: same-origin policy

› siteA can not access any content/cookies from siteB

› To interact, siteA can send postMessage() to siteB who
listens for messages via
window.addEventListener('message', handler)

› siteA can send a request to siteB, but should not be able to
obtain any information about the response

Side-channel information may still be available (see: XSLeaks)

35

Client-side: security feature delivery
GET /index.html
User-Agent: Firefox
Accept: text/html

200 OK
Content-Type: text/html
Strict-Transport-Security:
max-age=631138519

enforce

Client-side web vulnerabilities

Cross-site Scripting

37

Client-side: cross-site scripting

› XSS is caused by injecting attacker-controlled content into web
page without proper encoding

< should be encoded as <

› Malicious content can originate from request
(parameter/referrer/…), or database (reflected vs persistent)

› Content may be written dynamically in JavaScript or generated
on the server side (DOM-based vs server-side)

› Attacker can run arbitrary content on web page: steal cookies,
take over entire website, …

38

Client side: cross-site scripting

PersistentReflected

DOM-based

Server-side print('Hello %s' %
params.name)

print('Comment: %s' %
db.getComment())

el.innerHTML = 'a' +
location.hash

el.innerHTML = 'a' +
localStorage.getItem('b')

39

Client side: cross-site scripting

› Many defenses
Correctly encode dynamic content (based on context: different
encoding is needed for element attribute vs element content
Several defenses try to minimize consequences, or make exploitation
more difficult
HttpOnly cookies: cookies with this attribute can not be read from JS
X-XSS-Protection: Chrome has built-in detection for reflected XSS
Content-Security-Policy: define where JavaScript can originate from
CSP v3: strict-dynamic + nonce => all scripts with random nonce are
loaded, these can dynamically load new scripts
Trusted types: defends against DOM-based XSS by design

Client-side web vulnerabilities

Cross-site Request Forgery

41

Client-side: cross-site request forgery

› Attacker makes victim's browser send a request to target site
Victim's cookie for target site is included

› Target site processes request in name of the victim
Target site can not differentiate legitimate requests from attacker-
triggered request

› Defense: require + validate randomly generated token in form
Token can not be guessed by the attacker; if incorrect: abort operation

› Defense: SameSite cookie (becomes default in Chrome soon)
Cookie with SameSite attribute is not sent for cross-site requests

attacker.com

fetch("https://example.com/change-password",
{
method: "POST",
body: "new_password=h4x0r3d",
mode: "no-cors",
credentials: "include"

}
);

example.com

Client-side web vulnerabilities

XSLeaks

44

Client-side: XSLeaks

› Cross-site leaks: obtain side-channel information of cross-origin
resource

› Same attack scenario as with CSRF
Victim executes JS on attacker.com

› Types of side-channel information
Size, web page has iframe, response status

› Response from website depends on state of the user
Attacker can infer this state

May leak information about user state (privacy)

~19kB

~183kB

May leak information about user state
(security)

Gelernter, Nethanel, and Amir Herzberg. "Cross-site search attacks." Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2015.

47

Client-side: XSLeaks

› XS-Search is an instance of XSLeaks
Abuses search functionality of target site
Leverages either processing time or response size
May try to perform response (size/time) inflation

› search(keyword) returns 1/0 results
Response inflation: 1 result will be repeated many times
Response time leaks whether 1 or 0 results were returned

› Search for secret string character by character

48

Client-side: XSLeaks

› Techniques to leak response size:

Web timing

Browser timing

Browser storage quota

TCP windows (HEIST)

› Other leaking vectors:

Frame count

Number of redirects

Error events: response status

XSS filter: presence of JS code

…

Client-side web vulnerabilities

XSLeaks: web/browser timing

Cross-site timing attacks [1]
• State-dependent content

attacker.comvictim example.com

��.� ��	��
����"�����.����	�.��/
���
.����

Start timer

Stop timer

[1] Bortz et al. 2007. Exposing private information by timing web applications. In Proceedings of the 16th international conference on
World Wide Web (WWW '07). ACM, New York, NY, USA, 621-628.

error event

à Logged in or not?

à #items in online basket

Network latency and
instability

Browser-based timing attacks [1]
attacker.comvictim example.com

Start timer

Stop timer

[1] Van Goethem et al. The Clock is Still Ticking: Timing Attacks in the Modern Web. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS '15). ACM, New York, NY, USA, 1382-1393.

à Abuse of firing events during parsing process
- suspend when fetched
- error on fail

���������
�
�����""��	.����
�."�/����
.�� �

suspend

error

52

XSLeaks: Cache Storage AttackCache Storing Attack

let url = 'https://example.org/resource';
let opts = {credentials: "include", mode: "no-cors"};
let request = new Request(url, opts);
let bogusReq = new Request('/bogus');
fetch(request).then(function(resp) {
 // Resource download complete
 start = window.performance.now();
 return cache.put(bogusReq, resp.clone())
}).then(function() {
 // Resource stored in cache
 end = window.performance.now();
});

53

●

● ●

●

●

●
●

●

●

● ● ● ● ● ● ● ●0

2500

5000

7500

25 50 75 100
Difference in file size (kB)Av

g.
 ti

m
e

to
 p

er
fo

rm
 ti

m
in

g
at

ta
ck

 (m
s)

● Classic timing attack
Video parsing attack
Cache storing attack
Cache + video parsing

54

XSLeaks: Browser-based timing attacks

› Can differentiate resource that differ few KB

› Video parsing mechanisms already patched is several browsers
New features may cause new side-channels (e.g. SRI, image parsing, …)

› Real-world attacks can be improved by using response inflation
One result is repeated many times → difference in response size is
artificially enlarged

› Attacks discovered in 2016; bug hunters starting to leverage
techniques

55

Client-side web vulnerabilities

XSLeaks: storage quota

57

XSLeaks: Abusing storage quota

› Each site (eTLD+1) has a specific quota

IndexedDB, localStorage, …

Cross origin resources (!!!)

› When quota is reached, any attempt to store more is blocked

› Can be used to determine exact size of cross-origin resource

› Exact size --> defenses against response inflation do not work

Quota

Quota

Step 1: fill

Quota

Step 1: fill
Step 2: remove x x

Quota

Step 1: fill
Step 2: remove x
Step 3: store resource

x

Quota

Step 1: fill
Step 2: remove x
Step 3: store resource
Step 4: fill

x
y

Quota

Step 1: fill
Step 2: remove x
Step 3: store resource
Step 4: fill
Step 5: x - y = SIZE

x
y

Client-side web vulnerabilities

XSLeaks: TCP windows (HEIST)

65

XSLeaks: HEIST
(HTTP Encrypted Information can be Stolen through TCP Windows)

› Determine exact response size (compressed)

› 1 TCP window = 10 TCP packets = 14480 bytes of data

› 2nd TCP window can only start after ACK (--> additional round-trip)

› Response fits in 1 TCP window --> 1 RTT, otherwise 2+ RTTs

› Use side-channel to detect when headers are received
fetch() promise resolves

› Use side-channel to detect when full response is received
Cache API store + read

› Timing difference < 5ms --> 1 TCP window, otherwise 2 TCP windows

Response (14480 bytes)

1st TCP window

1st TCP window

fetch() resolves cache store + read finishes

Timing difference

Response (14481 bytes)

1st TCP window

ACK

…

2nd TCP window

1st TCP window

ACK

…

2nd TCP window

fetch() resolves

Timing difference (much bigger)

cache store + read finishes

72

XSLeaks: HEIST

› Important prerequisite: reflection of request in response

Needed to align on TCP window size

› Exact size is known after compression

Allows for BREACH-like attack

Hello $_GET['name'], your secret value is COSIC_COURSE

gzip(Hello Tom, your secret value is COSIC_COURSE)

?name=Tom

==> Hello Tom, your secret value is COSIC_COURSE

gzip(Hello COSI, your secret value is COSIC_COURSE)

?name=COSI

==> Hello COSI, your secret value is @-27,4C_COURSE

gzip(Hello COSIx, your secret value is COSIC_COURSE)

?name=COSIx

==> Hello COSIx, you secret value is @-27,4C_COURSE

gzip(Hello COSIC, your secret value is COSIC_COURSE)

?name=COSIC

==> Hello COSIC, you secret value is @-28,5_COURSE

--> 42 bytes

--> 41 bytes

75

XSLeaks: HEIST

› Can be used to extract cross-origin secrets (CSRF tokens)

› Defense: disable compression for sensitive content
https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-
web/
Not widely deployed, requires regex to know what is sensitive

› Defense: refresh tokens after N requests
Can be tricky + what about other sensitive content?

› Large-scale impact: to be explored

https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-web/

Client-side web vulnerabilities

XSLeaks: Defenses

77

XSLeaks: Defenses

› SameSite cookie (to prevent authenticated requests)
Not sufficient: window.open()

› Fetch-Metadata
New feature (not yet implemented)
Adds request headers to give web server information on how the
request was sent

› Cross-Origin-Opener-Policy (COOP)
New feature (not yet implemented)
Reference to opened window becomes null => can not redirect

Takeaways

79

Web vulnerabilities

› SQL injection

› Insecure direct object references

(IDOR)

› Command injection

› Server-side request forgery (SSRF)
› XML external entities (XXE)

› Remote/Local file inclusion (RFI/LFI)

› Unsafe deserialization

› Timing attacks

› Cross-site scripting (XSS)

› Clickjacking
› Cross-site request forgery (CSRF)

› HTTP response splitting

› Open redirect
› CORS misconfiguration

› Authentication issues
› Cross-site script inclusion (XSSI)

› XSLeaks

Client-sideServer-side

80

Takeaways

› Web security covers both client-side and server-side

› New features often introduce new vulnerabilities
Request remote content: SSRF
Serialization: unsafe deserialization
Browser quota: determine size

Security should always be considered!

› Many defenses are available
It is becoming increasingly difficult to correctly apply all consistently

Questions?

@tomvangoethem

