
Mobile Friendly or Attacker Friendly?
A Large-scale Security Evaluation of 

Mobile-first Websites

Tom Van Goethem

@tomvangoethem



2

Mobile-first websites

› Websites developed specifically for mobile users

› Typically different sub-domain (mostly m.example.com)
Encountered various cases of abuse: phishing (m-twitter.com); 
scams/malware (m-amazon.com); malware (m-norton.com)





4

Mobile-first websites

› Websites developed specifically for mobile users

› Typically different sub-domain (mostly m.example.com)
Encountered various cases of abuse: phishing (m-twitter.com); 
scams/malware (m-amazon.com); malware (m-norton.com)

› Mostly developed several years after desktop site



Based on Mementos (http://timetravel.mementoweb.org/)



6

Mobile-first websites

› Websites developed specifically for mobile users

› Typically different sub-domain (mostly m.example.com)
Encountered various cases of abuse: phishing (m-twitter.com); Bitcoin 
scam (m-amazon.com); malware (m-norton.com)

› Mostly developed several years after desktop site

› Provide unique viewpoint on how security is handled
Assumption: if security features are considered during design-time, mobile 
should have higher adoption on certain (newer) features



7

Web security

› Despite good security practices, websites may still suffer from vulnerabilities

› Several defense mechanisms exist to prevent vulnerabilities or limit their 
impact

X-Frame-Options to prevent clickjacking attacks
HttpOnly attribute to prevent cookies to be stolen in XSS attack

› Are these mechanisms applied ad hoc, or universally across all assets?

› Are defense mechanisms considered during design time, or only applied 
reactively?



1. Find mobile-first sites

2. Obtain features that 
capture security hygiene

3. Perform statistical 
analysis on mobile/desktop 

results

4. In-depth analysis



1. Find mobile-first sites



headless Chromium

if desktop browser is redirected to different
(sub)domain than mobile browser 

=> possible mobile-first site

headless Chromium, instrumented to emulate mobile device
(screen dimensions, UA, built-in mobile emulator, …)



11

Finding mobile-first sites

› Visited home page of Tranco top 1M sites

› 15,541 domains redirected to different (sub-)domain

› Filter out irrelevant websites
45 redirected to Google Play store
268 did not have accessible mobile/desktop site
2,173 empty sites
820 duplicate sites (e.g. google.com/google.nl) => found by perceptual hash
1,471 non-unique mobile-first sites (redirect to domain already in dataset)
512 were compromised and redirected mobile users to suspicious domain

› In total: 10,222 mobile-first sites



12

Finding mobile-first sites

› Discovered 512 compromised sites
Most likely caused by vulnerable WordPress plugin
Attacker uploaded .htaccess file
If visitor's user agent string was mobile: redirect to malicious site 
(wwwtype.ru) -> redirected to porn site with referral in URL
Compromise is less likely to be detected (only if administrator visits 
site on mobile device)



2. Obtain features that capture security hygiene



14

Obtaining features that capture security hygiene

› Website's security: vulnerabilities + defense mechanisms that defend 
against them

› Finding vulnerabilities at large scale
Often requires intrusive techniques
Might be difficult to detect
Detection site-specific (=> no universal method)

› Defense mechanisms
Usage recommended to completely defend or limit attack consequences
Communicated to browser => easier to detect (response headers)



15

Security features (1)

› XSS in-depth defenses
HttpOnly attribute on cookies (=> cookie not accessible from JS)
Content-Security-Policy (=> defines which sources can execute JS)

› CSRF defense
Unique token in form (in our study: only against login-CSRF)

› Clickjacking defense
X-Frame-Options (value: DENY/SAMEORIGIN)
Content Security Policy (frame-ancestors directive)



16

Security features (2)

› Mime-sniffing defense
X-Content-Type-Options (nosniff: instruct browser to not try to determine 
content type)

› Man-in-the-Middle defenses/issues
Presence of HTTPS
Secure attribute on cookie (cookie not sent over insecure connections)
Strict-Transport-Security (all following connections are made over HTTPS)
Mixed content (HTTP resources on HTTPS page)
SSL stripping (form to HTTPS on HTTP page)
Insecure content submission (form to HTTP on HTTPS page)



17

Security features (3)

› Defense of including dynamic content
sandbox attribute on iframe (determine what iframe is allowed to do)
integrity attribute for scripts (scripts served without unexpected changes)

› Prevent leaking potentially sensitive information
Referrer-Policy header: control the referrer information sent to 3rd parties



18

Security features

› Use of defense mechanisms is not always required
Depends on the mechanism and application
Mobile/desktop are likely to offer similar functionality
Comparison should be pair-wise (m.example.com vs example.com)

› In our case: we want to estimate security consciousness
Presence of security features is a good indicator
At least website administrator considered it

› Total: 11 defense mechanisms & 4 potential weaknesses



19

Obtaining data

› Up to 20 page visits per site per browser type
191,237 for mobile

195,487 for desktop

› Instrumented headless Chrome with/without mobile emulation
Used customized distributed crawler



3. Perform statistical analysis



0 1 2 3 4 5 6 7 8 9 10 11
1umber of seen security feDtures with positive impDct

0

500

1000

1500

2000

2500

3000

1
um

be
r o

f s
ite

s

DesNtop
0obile
Both desNtop Dnd mobile



22

Statistical analysis: questions

› Are mobile sites more secure than desktop sites?

› Which security features are more prevalent on mobile sites 
compared to their desktop counterpart?

› Are the features introduced because of security effort made by 
web developer?



23

Statistical analysis: approach

› Wilcoxon signed-rank test

Statistical test for paired samples (mobile vs desktop) !

Does not rely on a priori assumptions on the distribution of data !

› Mediation analysis

Determine what the effect of a web app's complexity is on its 

security feature usage

Complexity is quite vague; we consider it feature-specific

e.g. # HttpOnly cookies compared to total number of cookies







26

Statistical analysis results

› Security features more prevalent on desktop

Effect of device most outspoken for MitM-related features

› For most features: effect of device limited & often statistically 

insignificant

Indicates consistent application of security features across desktop & 

mobile sites

› Mediation analysis: complexity of website has significant indirect 

effect on cookie/frame/HTTPS related features

E.g. desktop sites have more cookies => more likely to have 

HttpOnly/Secure cookie



0 1000 2000 3000 4000 5000 6000 7000

H7732nOy Rn FRRkLH
CRntHnt-6HFXrLty-

3ROLFy hHDdHr
FRrP wLth C65F tRkHn

X-FrDPH-2StLRns
hHDdHr

X-CRntHnt-7ySH-
2StLRns hHDdHr

3DgH sHrvHd RvHr
H7736

6HFXrH Rn FRRkLH
6trLFt-7rDnsSRrt-
6HFXrLty hHDdHr

sDndbRx Rn frDPH
6Xb-rHsRXrFH

LntHgrLty fRr sFrLSt
5HfHrrHr-3ROLFy

hHDdHr

BrRwsHr bXLOt-Ln X66
SrRtHFtLRn dLsDbOHd

H7736 SDgH wLth H773
rHsRXrFHs

FRrP wLth 66L
strLSSLng

FRrP Rn H7736 SDgH
wLth H773 DFtLRn

DHsktRS
0RbLOH
BRth dHsktRS Dnd PRbLOH

20%



4. In-depth analysis



29

In-depth analysis

› Content Security Policy
Complex mechanism: many different directives, has impact on many 
site features
Comparison with prior study [1]

› HTTPS adoption
Most effect of website type (mobile/desktop)
Most prevalent feature on desktop + mobile

[1] Weichselbaum et al. CSP is dead, long live CSP! On the insecurity of whitelists and the future of content security policy. CCS'16



30

In-depth analysis: Content Security Policy

› 502 desktop sites, 482 mobile sites

› If enabled: most pages covered 
78.94% for desktop, 82.01% for mobile
Typically (90+%) same policy on all pages

› Almost all suffer from high-severity issues
Based on Google's CSP evaluator
Only 2 desktop and 3 mobile sites without high-severity issues
Mostly due to unsafe-inline



1

[1] Weichselbaum et al. CSP is dead, long live CSP! On the insecurity of whitelists and the future of content security policy. CCS'16

§ default-src: used much less than in 2016 study

§ New directives: more adoption

(block-all-mixed-content, referrer, frame-ancestors)

NOTE: [1] studied different dataset



32

In-depth analysis: HTTPS adoption

› 6,428 (62.88%) websites adopt HTTPS on mobile & desktop

› Most (69.59%) have a secure implementation on both sites

› 665 desktop sites are secure, whereas mobile version is not
Mobile redirects to HTTP

› 386 mobile sites are secure, whereas desktop version is not
Mixed content on desktop





What does this tell us?



35

Conclusions from analysis

› Adoption of security mechanisms is similar on mobile & desktop

In terms of type of security mechanism

In terms of usage/implementation of security mechanism

› => security mechanisms likely not considered at design time

› Overall, mobile sites have slightly fewer security mechanisms

Less need for it? Less interest in securing them?

› Adoption of security features is low (for most features: 5-20%)



36

Attribution of feature presence

› If a site contains an iframe with a sandbox attribute, is this because of efforts 

made by the web developer?

› We performed an analysis for several features

Group instances together based on common characteristic (e.g. resource 

location or HTML attributes)

› Presence of certain features is highly related to 3
rd

parties or libraries

Certain <iframe>s are always served with sandbox attribute (e.g. recaptcha

challenge)

Almost all ASP.NET_SessionId cookies had HttpOnly attribute

› Not all though: only 16.4% of SRI usages can be attributed to 3
rd

parties



37

Attribution of feature presence

› Attribution is not straightforward
Can depend on web stack/libraries/3rd parties
Can be either direct or indirect (e.g. 3rd party inserting new scripts)
Important if we want to capture security efforts
=> future work

› Conscious security feature usage by web developers is even 
lower than our reported numbers



How do we move on from here?



39

The power of defaults

› Almost all sites stick to secure defaults (e.g. HttpOnly cookie)

› When creating a new application, what if…
We start with all security features enabled
And only make exceptions if needed
Making an exception would force web developer to learn about the 
security feature and the possible consequences of disabling it

› Still some limitations (e.g. what with new features), but still 
significantly better than nothing…



40

What else can we do?

› Your application will most likely have vulnerabilities

› Security features can make exploitation impossible or at least more 
difficult

Increase effort/costs of the attacker

› Try to reduce threat surface for users as much as possible

› For mobile-first sites: automatically redirect desktop users to 
desktop site; mobile users to mobile site

Vulnerabilities in desktop site shouldn't affect mobile users and vice versa



Conclusion



42

Conclusion

› We performed a large-scale comparative study on mobile-first sites
Provides unique viewpoint on security adoption of organization

› Desktop sites have slightly higher adoption of security features

› Security features typically applied universally across all website assets
Indicates defenses not applied at design time

› Complexity has influence on prevalence of features
Requires mediation analysis



43

Conclusion

› Usage of security features can not always be attributed to 
conscious choices made by web developers

› Overall usage of security mechanisms is quite low

› Secure defaults can be very effective

› Don't expose users to unnecessary vulnerabilities
Desktop users => desktop site
Mobile users => mobile site



44

For more details: take a look at our paper

† Signed copies available for purchase after session (while stocks last)

https://tom.vg/papers/mobile-first.pdf

https://tom.vg/papers/mobile-first-full.pdf


Questions?

@tomvangoethem


