
Exploiting and Mitigating Implicit
Cookie-based Authentication
Vulnerabilities on the Web

Tom Van Goethem
@tomvangoethem

Overview

3

Cookies & SOP 101 Tracking & cross-site
attacks

Third-party cookie
policies

Comprehensive
evaluation

Conclusion

Cross-site size-exposing
attacks

Cookie inclusion

4

domainA.com domainB.com

/index.html /image.jpg

Browser
domainA.com/

index.html
domainB.com/

image.jpg

HTTP cookies [1]

Domain A Domain B

› Implicit inclusion

› Authentication / identification

› Same-Origin Policy

[1] Barth, A., "HTTP State Management Mechanism", RFC 6265, DOI 10.17487/RFC6265, April 2011.

A B
A

B

Third-party tracking

Third-party Tracking

7

cat-news.comvictim paw-book.com

��
���:���
� /::�������<�����"
���<��.-:"��

����
�:��-<�"
���
�:���"/:�� 	���
���:	

› Aggregate unique
browsing profiles“95% of the pages visited contain 3rd party requests to potential trackers

78% attempt to transfer unsafe data”

8

Cross-site attacks

Cross-site Request Forgery (CSRF)

• Authenticated
state-changing
request

10

cute-kittens.comvictim doggo-bank.com

&��� 9��	��::�9���-�����
���"����:���9/.�"���
������:	��������.����.�:	��:
�99�

Cross-site request forgery

• Past: vulnerabilities for YouTube, ING, MetaFilter [1]
• Now

Framework-integrated server-side protection
Awareness

• Context

11

Cross-site Request Forgery

• Why is this still a problem?
Defense (e.g. random token in request parameters) needs to be applied ubiquitously
Insecure by default

• How to move on from here?
SameSite cookies -> secure by default (if enforced correctly by the browser)

12

13

Cross-site Size-exposing Attacks

May leak information about user state (privacy)

~19kB

~183kB

May leak information about user state (security)

Gelernter, Nethanel, and Amir Herzberg. "Cross-site search attacks." Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2015.

Cross-site timing attacks [1]
• State-dependent content

16

cute-kittens.comvictim doggo-bank.com

�.�� �����-�����""������
	�/����".��
��-�����

Start timer

Stop timer

[1] Bortz et al. 2007. Exposing private information by timing web applications. In Proceedings of the 16th international conference on

World Wide Web (WWW '07). ACM, New York, NY, USA, 621-628.

error event

à Logged in or not?

à #items in online basket

Network latency and

instability

Browser-based timing attacks [1]

17

cute-kittens.comvictim doggo-bank.com

Start timer

Stop timer

[1] Van Goethem et al. The Clock is Still Ticking: Timing Attacks in the Modern Web. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS '15). ACM, New York, NY, USA, 1382-1393.

à Abuse of firing events during parsing process
- suspend when fetched

- error on fail

��/
������� .�������
�--���
��"����/�
�:".��� 	

suspend

error

Video Parsing Attack

18

Video Parsing Attack

let video = document.createElement('video');

// suspend => download complete
video.addEventListener('suspend',function(){
 start = window.performance.now();
});

// error => parsing complete
video.addEventListener('error',function(){
 end = window.performance.now();
});

video.src = 'https://example.org/resource';

CACHE MANIFEST
CACHE:
https://example.org/resource
NETWORK:
*

appcache.manifest

Cache Storage Attack

19

Cache Storing Attack

let url = 'https://example.org/resource';
let opts = {credentials: "include", mode: "no-cors"};
let request = new Request(url, opts);
let bogusReq = new Request('/bogus');
fetch(request).then(function(resp) {
 // Resource download complete
 start = window.performance.now();
 return cache.put(bogusReq, resp.clone())
}).then(function() {
 // Resource stored in cache
 end = window.performance.now();
});

20

●

● ●

●

●

●
●

●

●

● ● ● ● ● ● ● ●0

2500

5000

7500

25 50 75 100
Difference in file size (kB)Av

g.
 ti

m
e

to
 p

er
fo

rm
 ti

m
in

g
at

ta
ck

 (m
s)

● Classic timing attack
Video parsing attack
Cache storing attack
Cache + video parsing

Browser-based Size Leaking

• Can differentiate resource that differ few KB

• Video parsing mechanisms already patched is several browsers

New features may cause new side-channels (e.g. SRI, image parsing, …)

• Real-world attacks can be improved by using response inflation

One result is repeated many times → difference in response size is artificially enlarged

• Attacks discovered in 2016; bug hunters starting to leverage techniques

21

Abusing Storage Quota

• Each site (eTLD+1) has a specific quota

IndexedDB, localStorage, …

Cross origin resources (!!!)

• When quota is reached, any attempt to store more is blocked

• Can be used to determine exact size of cross-origin resource

• Exact size --> defenses against response inflation do not work

23

24

Quota

25

Quota

Step 1: fill

26

Quota

Step 1: fill
Step 2: remove x x

27

Quota

Step 1: fill
Step 2: remove x
Step 3: store resource

x

28

Quota

Step 1: fill
Step 2: remove x
Step 3: store resource
Step 4: fill

x
y

29

Quota

Step 1: fill
Step 2: remove x
Step 3: store resource
Step 4: fill
Step 5: x - y = PROFIT

x
y

Quota Management API

• Developers may want to know how many bytes are available/used

• Quota API returns “estimate”
In reality, the estimate provided exact number of bytes

• Attack becomes super easy
x = getEstimate(); store(crossOriginResource); y = getEstimate(); size = y - x;

30

Storage/Quota API status

• Fixes have been deployed
For every stored cross-origin resource, a random number of bytes (approx. 7MB in
Chrome) count towards the quota

• Low-impact solution, highly effective
No performance impact; small usability impact (for sites that store many cross-orgin
resources)
Very few attack scenarios left

Maybe abuse global quota & trigger website to store resource same-origin (highly unlikely)

31

32

CROSS-SITE ATTACKS

CROSS-SITE ATTACKS EVERYWHERE

HEIST
(HTTP Encrypted Information can be Stolen through TCP Windows)

• Determine exact response size (compressed)
• 1 TCP window = 10 TCP packets = 14480 bytes of data
• 2nd TCP window can only start after ACK (--> additional round-trip)
• Response fits in 1 TCP window --> 1 RTT, otherwise 2+ RTTs
• Use side-channel to detect when headers are received

fetch() promise resolves

• Use side-channel to detect when full response is received
Cache API store + read

• Timing difference < 5ms --> 1 TCP window, otherwise 2 TCP windows

34

Response (14480 bytes)

1st TCP window

1st TCP window

fetch() resolves cache store + read finishes

Timing difference

Response (14481 bytes)

1st TCP window

ACK

…

2nd TCP window

1st TCP window

ACK

…

2nd TCP window

fetch() resolves

Timing difference (much bigger)

cache store + read finishes

HEIST

• Important prerequisite: reflection of request in response
Needed to align on TCP window size

• Exact size is known after compression
Allows for BREACH-like attack

41

42

Hello $_GET['name'], your secret value is SWAG_MEISTER

gzip(Hello Tom, your secret value is SWAG_MEISTER)

?name=Tom

==> Hello Tom, your secret value is SWAG_MEISTER

gzip(Hello SWAG, your secret value is SWAG_MEISTER)

?name=SWAG

==> Hello SWAG, your secret value is @-27,4_MEISTER

43

gzip(Hello SWAGx, your secret value is SWAG_MEISTER)

?name=SWAGx

==> Hello SWAGx, you secret value is @-27,4_MEISTER

gzip(Hello SWAG_, your secret value is SWAG_MEISTER)

?name=SWAG_

==> Hello SWAG_, you secret value is @-28,5MEISTER

--> 42 bytes

--> 41 bytes

HEIST

• Can be used to extract cross-origin secrets (CSRF tokens)

• Defense: disable compression for sensitive content
https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-web/
Not widely deployed, requires regex to know what is sensitive

• Defense: refresh tokens after N requests
Can be tricky + what about other sensitive content?

• Large-scale impact: to be explored

44

https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-web/

Defenses

Same-site cookie [1]

• Cookie with extra attribute ‘SameSite’
SameSite=strict à NO CROSS-SITE REQUESTS!
SameSite=lax à exceptions: top-level GET, prerender

• Adoption by websites is rather slow
Interesting blog: Dropbox’s use case [2]

• In-depth defense against cross-site attacks

46

[1] West, M., Goodwin, M. Same-site cookies. Internet- Draft draft-ietf-httpbis-cookie-same-site-00, IETF
Secretariat, June 2016.
[2] https://blogs.dropbox.com/tech/2017/03/preventing-cross-site-attacks-using-same-site-cookies/

Use of same-site cookies
• against cross-site attacks

47

cute-kittens.comvictim doggo-bank.comdoggo-bank.com

SS

SS

��9 	���0���
:9�����-�2��������
����
���09���9�0�9

What about privacy?

• Built-in browser options
Block third-party cookies

Firefox Tracking Protection

Opera Ad Blocker

Safari Intelligent Tracking
Prevention

48

› Extensions
Ad blocking

Privacy protection

Client-side defense
mechanisms

Security measures only
work when they are
consistently and

universally applied!

Why evaluate third-party cookie policies?
• Browsers are known to exhibit inconsistent behavior

Interference from different standards
Unintended side-effects by code modification

• Saturated market of extensions
No clear quantification of quality

Automated evaluation of effectiveness

50

51

Black box approach

• Browsers consist of millions of lines of code
Source code not always available

• Many extensions

52

Framework Bypass detection data
Browser instance
- Browser
- Extension
- Configuration

Initiating cross-site requests

• AppCache API
Caching cross-site pages

• HTML-tags
<script>, , <link>, etc.

• Headers
Link, CSP headers

53

› Redirects

› JavaScript
Fetch, EventSource API, etc.

› PDF JS
sendForm()

› ServiceWorker API

Overview
• Browsers

Chrome
Opera
Firefox
Safari
Edge
Tor Browser
Cliqz

54

› Extensions

Ad blocking (31)

Tracking protection (15)

…

…

SameSite

SameSite

SameSite

SameSite

SameSite

55

56

57

10

58

59

60

tabId == -1

tabId >= 0

Local Service Worker
- Fetch
- XHR
- SendBeacon
- EventSource
- …

61

PDFium design flaw
• Chrome and Opera

62

DomainBGET / POST request

Extension API

Plugin / Extension
Block third-party

cookie option

Extensions

• No extension managed to block all third-party cookies to blacklisted domains
• Insufficient API

PDF JS for Chromium, but also Firefox favicon (HTML tags)

• Unclear API
No clear distinction for browser background requests

• Common mistakes
Insufficient permissions to intercept certain requests

63

Same-site cookie policy

• Chrome and Opera: prerender functionality
Both lax and strict included in cross-site request

• Edge
Lax bypasses: WebSocket API, <embed>, <object>
Strict bypasses: WebSocket API, redirects

• Firefox and Safari: no bugs detected

64

Evaluation of the framework

• Distributed crawler setup
Interception of headless Chrome network traffic
(using linux network namespaces)
Analysis of intercepted HTTP requests

• Alexa Top 10,000 websites
Up to 20 pages on each website
160,059 pages visited

• Completeness and novelty

65

Conclusion

Conclusion

• Built-in browser policies can be bypassed
Same-site cookie, third-party cookie policies
Advanced options (e.g. Opera AdBlocker, Firefox Tracking Protection)

• All adblocking and privacy extensions can be bypassed
Due to extension API provided by browsers
Due to common mistakes by extension developers

• Browsers are complex
• May lead to various vulnerabilities
• 3 different techniques to obtain cross-origin resource size

68

Thank you!
Twitter: @tomvangoethem

Email: tom.vangoethem@cs.kuleuven.be

