
Breaking privacy and security by
abusing cross-origin resource size

by Tom Van Goethem

Overview
• Introduction

• Web 101; same-origin policy

• Exposing cross-origin resource size
• Browser-based timing attacks
• Browser cache
• TCP windows

• Defence mechanisms
2

Introduction

• DNS resolution of twitter.com
• TCP connection to 199.16.156.198:443
• set up SSL connection
• send GET / request with headers (User-Agent, Cookie, ...)
• receive response for /
• parse & render HTML
• fetch other resources (JS, IMG, CSS, ...), possibly from other origins
• cache resources
• ???

• What happens when I open https://twitter.com/?

4

https://twitter.com/

5

• What happens when I open https://attacker.com/?

6

• DNS resolution of attacker.com
• TCP connection to 13.33.33.37:443
• set up SSL connection
• send GET / request with headers (User-Agent, Cookie, ...)
• receive response for /
• parse & render HTML
• fetch other resources (JS, IMG, CSS, ...), possibly from other origins
• cache resources
• ???

https://attacker.com/

7

https://attacker.com

<html>
 <script>

 </script>
</html>

https://foo.com/

GET / HTTP/1.1
Host: foo.com
User-Agent: Victim-browser
Cookie: foo_session=bar_42

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 6720

<html><head><title>...

8

// using
let i = new Image();
i.src = 'https://foo.com/';

// using <video>
let v = document.createElement('video');
v.src = 'https://foo.com/'

9

// using Fetch API
let opts = {
 "mode": "no-cors", // don't use CORS
 "credentials": "include" // attach cookies
};
fetch('https://foo.com/', opts).then(function(resp) {
 console.log('yay! a response!');
});

10

Can not access content of cross-origin resources

11

web server 
for foo.com

GET / HTTP/1.1
Host: foo.com
User-Agent: Victim-browser
Cookie: foo_session=bar_42

John Smith

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 6720

<html> 
 <head> 
 <title>Welcome, Mr. Smith</title> 
...

12

13

clinton-mail.com

GET /search?q=delete+emails HTTP/1.1
Host: clinton-mail.com
User-Agent: Hillary
Cookie: sess=3727c5a4c0a97e98

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 536720

<html> 
 <head> 
 <title>8410 results</title> 
...

14

clinton-mail.com

GET /search?q=email+security HTTP/1.1
Host: clinton-mail.com
User-Agent: Hillary
Cookie: sess=3727c5a4c0a97e98

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 29154

<html> 
 <head> 
 <title>5 results</title> 
...

Exposing cross-origin resource size
Timing attacks

GET /batman/

GET /joker/

GET /joker/

Classic Cross-site Timing Attacks

• Classic timing attacks have several limitations
• Network irregularities
• gzip compression
• Round-trip for each measurement
• Rate-limiting

19

Browser-based Timing Attacks

• Timing attacks in browsers overcome these limitations
• Timing measurement starts after resource is downloaded
• Measurements are more accurate
• For some attacks: resource is only downloaded once
• Obtain multiple measurements in short interval

20

Exposing cross-origin resource size
Browser-based timing attacks

GET /batman/

Browser-based Timing Attacks

• Side-channels allow measuring time to process resource
• Parse as specific format (~ CPU processing time)
• Retrieve from cache (~ disk read time)
• Store in cache (~ disk write time)

23

Video Parsing Attack

24

let video = document.createElement('video');

// suspend => download complete
video.addEventListener('suspend',function(){
 start = window.performance.now();
});

// error => parsing complete
video.addEventListener('error',function(){
 end = window.performance.now();
});

video.src = 'https://example.org/resource';

Video Parsing Attack

24

let video = document.createElement('video');

// suspend => download complete
video.addEventListener('suspend',function(){
 start = window.performance.now();
});

// error => parsing complete
video.addEventListener('error',function(){
 end = window.performance.now();
});

video.src = 'https://example.org/resource';

CACHE MANIFEST
CACHE:
https://example.org/resource
NETWORK:
*

appcache.manifest

Cache Storing Attack

25

let url = 'https://example.org/resource';
let opts = {credentials: "include", mode: "no-cors"};
let request = new Request(url, opts);
let bogusReq = new Request('/bogus');
fetch(request).then(function(resp) {
 // Resource download complete
 start = window.performance.now();
 return cache.put(foo, resp.clone())
}).then(function() {
 // Resource stored in cache
 end = window.performance.now();
});

●

● ●

●

●

●
●

●

●

● ● ● ● ● ● ● ●0

2500

5000

7500

25 50 75 100
Difference in file size (kB)Av

g.
 ti

m
e

to
 p

er
fo

rm
 ti

m
in

g
at

ta
ck

 (m
s)

● Classic timing attack
Video parsing attack
Cache storing attack
Cache + video parsing

Demo

Age-discovery Attack

1. Create Facebook posts, each targeted to users of a specific age

2. Discover age-range of the user

• Fetch corresponding resources
• Obtain timing measurements
• Determine age-range according to the value of timing

measurements

3. Discover exact age of the user

• Repeat (2) but for posts targeted to specific age

29

https://labs.tom.vg/

Moar Attacks
• Facebook: demographics
• LinkedIn: connections, ...
• Twitter: following, identity, ...
• Google: search history
• Amazon: shopping history
• Gmail: inbox search
• ...

34

Exposing cross-origin resource size
Browser cache

Browser Storage Side-Channel Attacks

• Leverage browser's Cache API
• Programmable cache
• Store any (including cross-origin) resources in a cache

• Available space is limited per site

• Discovered 3 different attack techniques
• Per-site quota, global quota, Quota Management/Storage APIs

36

37

@MrBunnsy

h4x.com

Per-site quota

h4x.com

37

@MrBunnsy

h4x.com

Per-site quota

h4x.com

38

@MrBunnsy

h4x.com

Per-site quota

x

h4x.com

38

@MrBunnsy

h4x.com

Per-site quota

x

h4x.com

38

@MrBunnsy

h4x.com

Per-site quota

x

h4x.com

38

@MrBunnsy

h4x.com

Per-site quota

x

h4x.com

38

@MrBunnsy

h4x.com

Per-site quota

x
y

h4x.com

38

@MrBunnsy

h4x.com

Per-site quota

x
y

x - y = 172,046 bytes

h4x.com

Quota Management/Storage APIs

39

@MrBunnsy

h4x.com

x

Quota Management/Storage APIs

39

@MrBunnsy

getEstimate()

h4x.com

x

Quota Management/Storage APIs

39

@MrBunnsy

getEstimate()

x bytes

h4x.com

x

Quota Management/Storage APIs

39

@MrBunnsy

h4x.com

x

Quota Management/Storage APIs

39

@MrBunnsy

h4x.com

x

Quota Management/Storage APIs

39

@MrBunnsy

h4x.com

x
y

Quota Management/Storage APIs

39

@MrBunnsy

getE
stim

ate(
)

h4x.com

x
y

Quota Management/Storage APIs

39

@MrBunnsy

getE
stim

ate(
)

y bytes

h4x.com

x
y

Quota Management/Storage APIs

39

@MrBunnsy

getE
stim

ate(
)

y bytes

y - x = 172,046 bytes

h4x.com

x
y

Real-world consequences
• User identification

• e.g. by Twitter username

• Revealing private information
• e.g. discover disease entered on WebMD

• Search-oriented information leakage
• e.g. GMail search [Gelernter: CCS'15]

• Infer cross-origin cache operations
• e.g. detect group membership on Telegram

40

DEMO

41

Exposing cross-origin resource size
TCP windows

H E I S T 45

GET /vault

SYN

SYN, ACK

ACK

Client Hello

Server Hello
Pre-Master Secret

TCP handshake

SSL handshake

H E I S T 46

GET /vault

encrypt( 
 GET /vault HTTP/1.1  
 Cookie: user=mr.sniffles
 Host: bunnehbank.com
  
)

1 TCP data packet

H E I S T 47

encrypt() = 29 TCP data packets

H E I S T 48

encrypt() = 29 TCP data packets

TCP packet 1
TCP packet 2

TCP packet 10
...

initcwnd
=
10

H E I S T 48

encrypt() = 29 TCP data packets

TCP packet 1
TCP packet 2

TCP packet 10
...

10 ACKs

initcwnd
=
10

H E I S T 48

encrypt() = 29 TCP data packets

TCP packet 1
TCP packet 2

TCP packet 10
...

10 ACKs

initcwnd
=
10

cwnd = 20

H E I S T 48

encrypt() = 29 TCP data packets

TCP packet 1
TCP packet 2

TCP packet 10
...

TCP packet 11
...

TCP packet 29

10 ACKs

initcwnd
=
10

cwnd = 20

H E I S T

HEIST

• A set of techniques that allow attacker to determine the
exact size of a network response

• ... purely in the browser

• Can be used to perform compression-based attacks, such
as CRIME and BREACH, in the browser

49

H E I S T

Browser Side-channels

• Returns a Promise, which resolves as soon as browser
receives the first byte of the response

50

• Returns time when response was completely downloaded

fetch('https://bunnehbank.com/vault',
 {mode: "no-cors", credentials:"include"})

performance.getEntries()[-1].responseEnd

• Send authenticated request to /vault resource

H E I S T

HEIST

• Step 1: find out if response fits in a single TCP window

51

H E I S T 52

time

fetch('...')

TCP handshake  
complete

SSL handshake  
complete

GET /vault

initial TCP 
window sent

first byte  
received

Promise 
resolves

initial TCP 
window received

responseEnd

T1 T2

Fetching small resource: T2 - T1 is very small

H E I S T 53

time

fetch('...')

TCP handshake  
complete

SSL handshake  
complete

GET /vault

initial TCP 
window sent

first byte  
received

Promise 
resolves

initial TCP 
window received

ACK sent

second TCP 
window sent

second TCP 
window received

responseEnd

T1 T2

Fetching large resource: T2 - T1 is round-trip time

H E I S T

HEIST

• Step 1: find out if response fits in a single TCP window

• Step 2: discover exact response size

54

H E I S T

Discover Exact Response Size

55

initcwnd second TCP window

Resource size: ?? bytes Reflected content: x bytes

H E I S T

Discover Exact Response Size

56

initcwnd second TCP window

Resource size: ?? bytes Reflected content: x/2 bytes

H E I S T

Discover Exact Response Size

57

initcwnd second TCP window

Resource size: ?? bytes Reflected content: x/2+x/4 bytes

H E I S T 58

initcwnd second TCP window

Resource size: ?? bytes Reflected content: y bytes

After log(n) checks, we find: 
y bytes of reflected content = 1 TCP window
y+1 bytes of reflected content = 2 TCP windows  

 → resource size = initcwnd - y bytes

H E I S T

HEIST

• Step 1: find out if response fits in a single TCP window

• Step 2: discover exact response size

• Step 3: do the same for large responses (> initcwnd)

59

H E I S T

Determine size of large responses

• Large response = bigger than initial TCP window

• initcwnd is typically set to 10 TCP packets
• ~14kB

• TCP windows grow as packets are acknowledged

• We can arbitrarily increase window size

60

H E I S T 61

CWND = 10
GET /foo

10 TCP packets

10 ACKs
CWND = 20GET /vault

= 19 TCP data packets

19 TCP packets

19 ACKs

H E I S T 61

CWND = 10
GET /foo

10 TCP packets

10 ACKs
CWND = 20GET /vault

= 19 TCP data packets

19 TCP packets

19 ACKs sent in single  
TCP window

H E I S T

HEIST

• Step 1: find out if response fits in a single TCP window

• Step 2: discover exact response size

• Step 3: do the same for large responses (> initcwnd)

• Step 4: if available, leverage HTTP/2

62

H E I S T

Leveraging HTTP/2

• HTTP/2 is the new HTTP version
• Preserves the semantics of HTTP

• Main changes are on the network level
• Only a single TCP connection is used for parallel requests

63

H E I S T

Leveraging HTTP/2

• Determine exact response size without reflected content
in the same response

• Use (reflected) content in other responses on the same
server
• Note that BREACH still requires (a few bytes of) reflective content

in the same resource

64

H E I S T 65

CWND = 10
GET /reflect?x=...

GET /vault

= 6 TCP packets

/reflect?x=... = 3 TCP packets

contains both 
/reflect  

and /vault

9 TCP packets

9 ACKsresponseEnd

Promise 
resolves

H E I S T 66

CWND = 10
GET /reflect?x=...

1 TCP packet

GET /vault

= 6 TCP packets

1 ACK

/reflect?x=... = 5 TCP packets

contains both 
/reflect and 

part of /vault

CWND = 20

10 TCP packets

10 ACKs

responseEnd

Promise 
resolves

Defence mechanisms

• The size of resources can leak at various layers
• → Defence layers can be applied at various layers

• Very few defences work properly

• Often a tradeoff between performance/usability and
security

• What “security grade” do we want?
• Does a rough estimation of the resource size already leak

information?

69

• Network layer
• Add random padding

• Not resilient against statistical attacks
• Increases bandwidth

• Add random delays
• Affects performance

• Randomize TCP window size
• Is the possible variability sufficient?

70

• HTTP layer
• Block requests triggered by attacker.com

• Hard to determine originator of the request
• Disable compression

• Only prevents compression-based attacks
• Affects network bandwidth
• Only disable compression for secret/private information?

71

• Browser layer
• Add random padding to cached Response objects

• Work in progress (~ 9 months, and counting)
• Reduces accuracy of exposed resource size

• Disable third-party cookies
• Breaks (a small part of) the web :-(

• SameSite cookies
• Cookies only included in same-site requests
• Promising feature (when adopted)

72

Conclusion
• Resource size can leak sensitive information

• Various techniques exist that can reveal the size of
cross-origin resources
• Browser-based, network-based

• Variety of defence methods, few that work properly
• Disable third-party cookies by default?

73

Questions?

74

@tomvangoethem 
 

tom.vangoethem@cs.kuleuven.be

