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ABSTRACT
In the last few years, traffic generated by mobile devices has sur-
passed desktop visits. In order to provide users with the best brows-
ing experience, many website owners specifically tailor their site to
mobile devices. While some websites make use of reactive designs,
many others opt to create an entirely new “mobile-first” website,
typically hosted on a subdomain of the desktop site. These mobile-
first sites provide a unique viewpoint on how organizations handle
security: the mobile version of a site is typically developed several
years after the desktop site by the same organization. Through a
large-scale security analysis on 10,222 domains with both a desk-
top and mobile-first version, we find several strong indicators that
security is generally applied consistently across the different parts
of an organization’s web estate. Overall, we find relatively few dif-
ferences between the desktop and mobile versions of a website,
both on the adoption and the implementation of security features,
indicating that these are applied reactively rather than proactively
during the design phase.
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1 INTRODUCTION
With web traffic generated by mobile devices surpassing desktop
traffic in the last two years [23], many organizations have made
extensive efforts to create an equivalent browsing experience for
mobile users. Typically, this is done by adapting the existing website
with a reactive design such that the same site can be used to serve
mobile and desktop clients. Another option is to create a mobile-
first site, which is specifically tailored to the needs of mobile users,
and is often hosted on a subdomain, in conjunction with the site
that serves desktop users.

In this paper, we perform a comparative evaluation of mobile-
first sites and their desktop counterpart, driven by a large-scale
statistical analysis. The unique characteristics of mobile-first sites
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allow us to make more general observations on how security is
applied on the web. More precisely, mobile-first sites are developed
by and/or for the same organization as the desktop version, but
at a much later time than the desktop version; by analyzing the
similarities and differences, we obtain insights on whether security
features are typically retroactively applied in an ad-hoc manner,
or whether they are the result of a more structured and thorough
approach during the initial development phase.

Through a large-scale statistical analysis of the adoption of a
wide variety of security features on 10,222 websites, we find that
desktop sites exhibit a slightly larger prevalence of these features,
both for the positive and negative ones. We validate that this is in
part due to the higher complexity of desktop sites. Moreover, we
find that almost all security features are consistently adopted on
both desktop and mobile versions. For instance, of the 502 desktop
sites that leverage Content Security Policy to improve security for
their visitors, we find that 83.27% also implement this feature on
their mobile site. This, along with the other findings in our paper,
are strong indicators that security is applied holistically, across
the various aspects of an organization’s web estate. Moreover, the
minimal differences between desktop and mobile versions, where
the latter are typically developed several years later, indicate that
security measures are typically applied retroactively instead of
during the design or initial development phase.

Next to our statistical approach, we also perform an in-depth
analysis of how certain security features are implemented. More
specifically, we analyze the adoption of different CSP directives and
the deployment of HTTPS. This analysis shows that even in the
configuration of security features, there is little difference between
mobile and desktop sites, confirming our earlier intuition that se-
curity is applied consistently across the various components of a
website.

In summary, we make the following contributions:

• We present the first comprehensive analysis on mobile-first
sites based on a variety of security features, measured across
10,222 domains visited with both a desktop browser and an
emulated mobile browser.

• Leveraging the unique viewpoint that mobile-first websites
provide on an organization’s general security posture, we
determine that security is generally applied in a holistic man-
ner, i.e. consistently across the different web-facing assets of
an organization.

• As a result of our in-depth analysis on specific security fea-
tures, we discover that many sites, both desktop and mobile,
are left unprotected despite their developers’ intentions.
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2 DATASET
2.1 Dataset composition
In our evaluation, we set out to explore whether mobile-first web-
sites provide better, or at least on-par, security for their visitors.
In order to do so, we first compose a set of mobile-first websites,
i.e. websites that are specifically designed to serve mobile users.
A common technique that is used to provide a mobile-first web-
site is to host it on a subdomain, such as m.example.com, or an
entirely different domain, e.g. example.mobi. Consequently, when
a user navigates to the home page of the website, this website deter-
mines whether the user agent is a mobile device by looking at the
User-Agent request header, or through some JavaScript code (e.g.
analyzing the navigator.userAgent string or using the match-
Media API. If the user agent indeed matches a mobile device, the
server will issue a redirect to the mobile-first website.

To determine websites with a (sub-)site specifically designed for
mobile devices, we visited the homepage of the Tranco top one mil-
lion list [15], created on December 20th, 20181. To ensure that our
crawler would be redirected to the mobile-first site, we emulated
a mobile environment in our headless Chrome (v71) browser: we
set the User-Agent string to that of Chrome on a popular mobile
device, we overrode the device metrics to match those of the mobile
device, and used the built-in mobile emulator [6]. For each of the 1
million websites, we visited it once with the mobile browser emu-
lation enabled, and once with the emulation disabled, totaling in
two million page visits. For every visit, we recorded the redirection
chain, and only considered a website to have a mobile-first com-
ponent when the “mobile browser” was redirected to a different
domain or subdomain than the “desktop browser”.

Out of the 15,541 domains that redirected to a different (sub)-
domain for mobile, we excluded 512 domains that we found to be
compromised. More specifically, when the domain was visited with
a desktop browser, the legitimate website was returned, however
on the mobile browser, the user was redirected to a supposedly ma-
licious domain, in most cases wwwtype.ru. This domain would then
again redirect the user to another advertising-based domain, and
ultimately the user would end on m.chaturbate.com or a website
serving suspicious-looking advertisements or fake surveys. The
sites were labeled as compromised by means of manual analysis,
guided by a targeted search. By obtaining part of the contents of a
compromised website, we determined that the adversary added an
.htaccess file that would match the User-Agent string of mobile
browsers and only redirect those to the malicious domain. Pre-
sumably, this cloaking tactic is used to extend the lifetime of the
compromise as administrators of websites that are typically only
contacted on desktop may not immediately notice the malicious be-
havior. Furthermore, the compromise may be overlooked by search
engines and security scanners, if these do not use a mobile browser
to crawl the website.

Next, we applied several other filtering steps: we excluded 45
domains that redirected to the Google Play store, and thus do not
provide a mobile-first site. Eight domains that only served mal-
ware were also excluded from our dataset. Next, we filtered out
268 websites because either the mobile or desktop site was not

1https://tranco-list.eu/list/RJ2Y/1000000

accessible. Finally, 2,173 sites were excluded because no same-site
links could be found on the home page on either the desktop or
mobile version. These were mainly pages resulting in an error or
redirecting to a third party to ask for cookie consent following the
GDPR regulation.

In a next step, we aimed to remove any bias towards websites that
are overrepresented in the ranking. For instance, several website
havemultiple domainswith a different TLD, for instance google.de
and google.com. As these refer to the same website, only a single
instance of these should be used. To find website from the same
owner hosting the same content, we take a perceptual hash [30]
of the screenshot of the website’s homepage, and cluster these ac-
cording to their similarity. Next, we manually analyze the different
clusters and remove entries that were incorrectly marked as part
of a group (our similarity threshold was set high enough to ensure
dynamic websites would also be detected as similar). For each clus-
ter of similar domains, we only keep a single one, namely the one
that was ranked highest in the Tranco list. In total, 820 domains
were removed as duplicates of another domain in the list.

In the same vein, we excluded websites from our dataset that
on the mobile version would redirect to the same domain as one
of the other websites would on the desktop version, and similarly
for desktop sites redirecting to a domain encountered elsewhere.
This filtering phase accounted for 1,471 sites that were excluded
from our dataset. As such, a total of 5,297 sites were removed from
our initial dataset because these do not represent unique websites
built specifically for mobile users. In the remainder of this paper,
we evaluate the security of 10,222 mobile-first websites that are
part of our dataset.

Although in total, we only discovered 10,222 mobile-first web-
sites, i.e. roughly one percent of our starting set of one million, it
should be noted that because of our strict criteria, we may have
missed certain websites, for instance if a website would host its
mobile version on the same fully-qualified domain name (FQDN) as
the desktop version, e.g. by setting a cookie that determines which
version of the site would be shown. Nevertheless, we believe that
our filtering approach did not bias the dataset towards the adoption
of security features, and therefore we consider the dataset to be
representable of websites with a mobile-first site.

2.2 Mobile site age
Finally, we explore when mobile sites are typically created, in com-
parison to the desktop version. For this, we leverage the Memen-
tos [26] accessed through the Time Travel service2, which can be
used to discover entries in a variety of web archival servers. We
use this service to determine the first occurrence of the mobile
(sub)domain and compare it to when the desktop (sub)domain was
first encountered. In Figure 1, we show the cumulative distribution
function of the time difference in years between the first encounter
of the two site versions over the 8,459 domains for which we could
determine the age for both the desktop and mobile version. While
there are certain limitations to this approach (e.g. the mobile-first
version might not be as popular and therefore is less likely show up
close to its inception; on the other hand, the desktop version may
have existed before the archival services took note of it, making

2http://timetravel.mementoweb.org/
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Figure 1: Difference in the first appearance of themobile site
in comparison to the desktop version.

the difference higher than reported), we find that mobile sites are
generally developed much later than desktop sites (median: 6.8
years). This provides a unique viewpoint on how security is applied
throughout the web: in case security countermeasures are mainly or
only considered during the design time, we would observe a signifi-
cant difference in the adoption of certain security features that were
not yet available at the time that the desktop site was developed,
but that were available and supported by all major browsers when
the mobile site was designed and developed. Conversely, a lack of
differences in the adoption of security measures would indicate
that these are applied retroactively and consistently across all web-
facing assets as an independent effort. Our large-scale statistical
analysis presented hereafter, strongly hints towards the latter.

3 EVALUATION OF SECURITY INDICATORS
In this paper, we analyze the security of mobile-first websites. Ide-
ally, we would measure the “absolute” security, i.e. determining
whether websites do not suffer from any vulnerabilities, however,
this would be infeasible for several reasons. For instance, actively
looking for vulnerabilities would be both unethical and illegal. Fur-
thermore, as websites can only be accessed in a black-box manner
and no universal vulnerability detection exists, it would be impossi-
ble to determine the presence or absence of vulnerabilities. Instead,
we analyze the security of mobile-first sites indirectly: by evaluating
the prevalence of certain security features, which are considered
best practice and can be used to hinder or completely mitigate
attacks, we aim to capture a latent factor of security effort. More
precisely, website administrators that adopted a certain security
feature have made the conscious decision to do so, and therefore
are interested in keeping visitors more secure. Furthermore, these
features can be passively observed by visiting the website with an
instrumented browser. A list of the various security features we
considered in our study can be found in Appendix A.

For every website in our dataset with a mobile-first version, we
visited up to 20 web pages, both with an emulated mobile and a
desktop browser (the same one used to compose our dataset, as
described in Section 2.1). For every visit, we captured all security-
relevant information, such as response headers, cookies that were
set or scripts and iframes that were included. In total, we collected
information from 191,237 web pages visited with a mobile browser
(on average, 18.67 pages per site), and 195,487 pages visited with
a desktop browser (19.08 pages per site on average). Considering
that it is advisable for most security features that they are applied

throughout the entire website, we believe that this captures a rep-
resentable view on a website’s security efforts.

3.1 Statistical methods
We examine whether the desktop and mobile websites show differ-
ent web security properties by determining whether the prevalence
distributions of these properties are significantly different. As we
measure properties for the desktop and mobile version of the same
root domain, we apply statistical tests that are appropriate for paired
samples. As we might have visited a different number of pages for a
domain, we calculate the proportion of pages that exhibit a security
property, in order to assess whether they are applied consistently
across a website.

As a baseline test for the significance of paired difference be-
tween desktop and mobile sites, we use the Wilcoxon signed-rank
test [29], which is non-parametric, i.e. it does not rely on a priori as-
sumptions on the distribution of the data, as opposed to the paired
t test. Our null hypothesis is that desktop and mobile domains
have the same security properties, i.e. that the paired samples come
from populations with the same distribution. The test outputs a
two-sided p-value that indicates whether this hypothesis can be
rejected with statistical significance or not (lower values of p equal
higher significance). It also outputs a statistic from which we calcu-
late the rank-biserial correlation using Kerby’s simple difference
formula [14]. This metric serves as the effect size by denoting how
much the device and the security property are correlated, with a
higher value indicating a stronger relationship.

However, our insights into the data as well as previous find-
ings [2] lead us to consider whether differences in the measured
security properties can be solely attributed to the differences be-
tween the security effort made for the desktop or mobile domain, or
whether another factor indirectly affects our measurements. More
specifically, we assess whether the complexity of a website may
influence the perceived security, as websites that support more
features require more effort to be configured as securely as simpler
sites. We quantify this complexity based on the definition of our
security properties, that is the feature for which we calculate the
proportion that is (in)secure. For example, the proportion of cookies
that have the Secure flag may depend on how many cookies a site
sets, as more cookies implies more effort to ensure that every single
cookie has the appropriate flag.

To determine whether this complexity has an indirect effect on
the measured security properties and therefore on the (difference
of) distribution per device and ultimately our conclusions, we per-
form a mediation analysis. This analysis tests whether there is a
mediator variable (here the complexity) that is influenced by the in-
put variable (the device on which the site is visited) and that causes
an indirect effect on the outcome variable (the proportion that is
(in)secure). We follow the approach of Montoya and Hayes [18],
which is applicable to our case of paired samples. The regression
model of Montoya and Hayes results in a confidence interval for the
indirect effect: if zero does not lie within this confidence interval,
the presence of this effect is statistically significant. The confidence
interval is determined through bootstrapping (repeating the regres-
sion with samples drawn from the data with replacement), which
does not require the assumption of normality.
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The mediation model also computes point estimates of the to-
tal, direct and indirect effect of our input variable on the outcome
through an ordinary least squares regression; here this linear re-
gression model does imply that the differences between desktop
and mobile sites are assumed to be normally distributed. The total
effect is the sum of the direct and indirect effect; all three effects can
then be interpreted as the number of units of change between desk-
top and mobile, i.e. the difference in the proportion of (in)securely
configured features.

3.2 Results
In this section, we interpret the results of our statistical analysis and
report on the most significant and interesting findings; Appendix B
lists the full numerical results of this analysis.

Overall, security features are seen more often on desktop than
on mobile websites. We see that the effect of the device is most
outspoken for the features related to man-in-the-middle attacks, of
which several show a relatively large and statistically significant
skew in adoption toward desktop sites. In general, pages are more
likely to be served over HTTPS on the desktop; in section 4.2, we
elaborate on the adoption and (in)secure configuration of HTTPS
across desktop and mobile websites.

The Referrer-Policy header has the highest (and a significant)
correlation at 0.429, being more prevalent on the desktop. For the
other features and corresponding vulnerabilities, the effect of the
device is at best verymoderate and usually statistically insignificant,
indicating a more consistent application of security features across
desktop and mobile sites.

Our mediation analysis shows that the complexity of a website
has a significant indirect effect on the proportion of securely con-
figured cookies and frames as well as pages served over HTTPS.
Desktop sites tend to have more cookies, and it tends to be less com-
mon for sites with more cookies to have a higher proportion with
the HTTPOnly or Secure attribute. The reduction in effect caused by
this increased complexity therefore actually counteracts the larger
direct effect where desktop sites are even more likely to have more
securely configured cookies.

For frames, the same reasoning on complexity holds as desktop
sites have more frames which leads to a lower prevalence of the
sandbox attribute, but here this actually reinforces the finding that
mobile sites tend to have more frames with the sandbox attribute.

When we analyze the distribution of sites in terms of the number
of security properties for which the site has at least one instance, we
see a similar picture: Figure 2 shows that desktop sites tend to have
implemented more features that positively affect security. However,
our analysis paints a bleak picture of security for both desktop and
mobile sites: only 530 (5.18%) desktop and 415 (4.06%) mobile sites
have implemented at least half of the measured vulnerability miti-
gations on at least one page, with only 327 (3.20%) domains having
done so on both. 6,128 (59.95%) domains see the same number of
positive features between the desktop and mobile sites, again with
a skew toward both sites having less features rather than more.

Figure 3 shows that the share of desktop versions of sites that
exhibit a security property is consistently higher than that of the
mobile version. The most widely implemented feature is serving
the site over HTTPS, at 6,904 (67.54%) desktop and 6,649 (65.05%)
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for which a site has at least one securely configured page.
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mobile sites with at least one HTTPS page. However, except for the
HttpOnly cookie attribute, positive security features are present
on less than 2,500 domains, with the majority having the feature on
both desktop and mobile. Conversely, negative features are affected
less by the website type. This shows that when website operators
implement good practices, they tend to do this on both desktop
and mobile, but that they are less successful at refraining from bad
practices in a consistent manner.

4 IN-DEPTH ANALYSIS OF SECURITY
PROPERTIES

In Section 3, we primarily focused on the broad view of how se-
curity mechanisms are applied on mobile websites compared to
their desktop version. In this section, we take a more detailed look
at a few security aspects, which provides more insights on how
website operators aim to improve their security, and which kind of
challenges they are still facing.

4.1 Content Security Policy
In our dataset, we find 463 mobile-first sites with CSP, and 502
desktop sites that use the feature. Interestingly, having a CSP on
the desktop website is a strong indicator that it will also be present
on the mobile version: 418 (83.27%) of the CSP-enabled desktop sites
also define a version on their mobile site. This indicates that security
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Table 1: Percentage of unique CSP policies that use a specific
directive, based ondata from this study (mobile and desktop)
and the study by Weichselbaum et al. [28].

Directive mobile % desktop % [28] %
report-uri 41.27 42.60 41.42
default-src 34.62 33.94 85.71
block-all-mixed-content 33.73 27.08 1.20
script-src 29.76 25.99 86.78
frame-ancestors 28.17 22.74 8.12
referrer 27.78 25.27 1.61
img-src 26.59 25.99 77.58
style-src 23.41 22.02 78.22
font-src 19.84 16.62 66.55
connect-src 19.44 20.22 54.37

efforts are typically made universally, across all web-facing assets
of an organization. This is confirmed by the fact that on average
the percentage of web pages within a site that are protected with
CSP is quite high (82.01% for mobile, 78.94% for desktop). Overall,
we find that websites that adopt CSP typically create one universal
policy that is applied throughout the website: 92.22% and 91.24% of
the websites only use a single policy on their mobile and desktop
version respectively.

To further evaluate the CSP policies, we use Google’s CSP Eval-
uator3, which is based on the results of a large-scale study [28].
Similar to the findings of this study from 2016, we find that the
vast majority of CSP policies can be bypassed: only 3 mobile-first
sites do not suffer from high-severity issues that make the policy
ineffective against XSS. On desktop, there are only 2 websites with
an effective policy. Similar to the two large-scale studies on CSP
that were performed in 2016 [8, 28], we find that most policies
are still rendered ineffective due to the use of 'unsafe-inline'
(92.38% on mobile, 94.17% on desktop).

Interestingly, when comparing the prevalence of CSP directives
of mobile and desktop sites from our dataset with the findings of
Weichselbaum et al. [28], as listed in Table 1, we find significant
differences. In general, we observe that there is a much higher
variety of CSP directives. For instance, we see that the block-all-
mixed-content, frame-ancestors, and referrer directives are
significantly more prevalent in our dataset than in the 2016 study.
Finally, we can see that there are relatively few differences in the
adoption of CSP directives between mobile and desktop sites.

4.2 HTTPS adoption
Figure 4 shows how the desktop and mobile versions of a site com-
pare in terms of secure HTTPS implementations. For 4,473 (43.76%)
domains, both are fully secure. In addition, 665 (6.51%) desktop and
386 (3.78%) mobile sites are fully secure while their counterpart
is not: for mobile, this is mostly due to the inclusion of HTTP re-
sources on the desktop site, while for the desktop, this is rather
due to the mobile site redirecting to HTTP. In fact, redirections to
HTTP pages represent the second largest class for mobile sites: for
1,637 (16.01%) sites, a user that visits the root domain over HTTPS
is redirected to the mobile version served over HTTP, undoing the
additional security of a HTTPS connection.

3https://csp-evaluator.withgoogle.com/
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Figure 4: Sankey diagram of the distribution of sites that
(in)correctly implement HTTPS on desktop (left) and mo-
bile (right). Flows indicate whether the desktop and mobile
site for a domain are implemented as (in)securely; the color
represents the least secure configuration of the pair.

650 (6.36%) domains have both an insecure desktop and mobile
site, mostly due to the certificate having an invalid common name.
38 insecure desktop and 9 insecure mobile sites have a fully secure
site for the other device, indicating that the website operator has
only considered one device when setting up HTTPS for their do-
main. Finally, configurations with obsolete parameters (e.g. an older
TLS version) or failures to connect over HTTPS appear to occur
consistently between desktop and mobile sites. Overall, less than
half of our mobile-first sites are configured securely, on both desk-
top and mobile; we see that website operators are prone to forget
that both versions need to be set up properly, e.g. by redirecting
to a HTTP site or having an insecure configuration for one device,
leaving some users vulnerable to man-in-the-middle attacks.

5 RELATEDWORK
Differences between the desktop and mobile versions of websites in
terms of security characteristics can lead to abuse going undetected
or the introduction of additional vulnerabilities. Amrutkar et al. [2]
demonstrated that static features used in detecting malicious web-
pages, such as the number of scripts or frames, are less prevalent
on mobile than on desktop websites. Therefore, they developed
a static analyzer that detects malicious mobile webpages using a
tailored set of features. They evaluated their tool on 53,638 mobile
webpages found by applying heuristics (subdomains, TLDs and
URL paths) that indicate a mobile webpage. Mendoza et al. [17]
analyzed inconsistencies in security-related HTTP headers when
websites are served to desktop or mobile clients, finding over 2,000
websites with at least one different configuration. They attribute
these errors in part to the difficulty of consistently maintaining
multiple versions of one website.

Large-scale analyses of web security mechanisms have been
used to determine the security awareness and effort of website
infrastructure operators. Van Goethem et al. [27] measured defen-
sive security mechanisms and vulnerabilities across over 22,000
European websites, based upon which they develop a score that
estimates the security level of a website. Stock et al. [24] performed
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a longitudinal study of the adoption of security mechanisms, trans-
lating them into security awareness indicators, and correlated these
with the presence of related vulnerabilities. Tajalizadehkhoob et
al. [25] measured security features on shared hosting platforms,
and derived the security effort of both the website operator and
hosting provider through statistical inference of latent factors.

Due to the particular environment, e.g. a small screen size, brows-
ing on mobile devices can suffer exploits that are not present on
the desktop. Niu et al. [20] were the first to uncover additional
vectors for phishing across three mobile browsers, e.g. due to URL
truncation. Felt and Wagner [9] found that the interaction between
mobile applications and websites visited through mobile browsers
can also enable phishing attacks. Amrutkar et al. [3] found two
classes of display security vulnerabilities in mobile browsers that
were previously unseen in desktop versions. The authors later also
analyzed the visibility of security indicators in mobile browsers [4].
Luo et al. [16] studied support for security mechanisms in mobile
browsers over time, finding that while adoption increases over time,
several popular mobile browsers do not yet support a majority of
such mechanisms, and may be slow to pick up features already in
use on popular websites.

6 CONCLUSION
In this paper, we set out to explore whether the security of mobile-
first sites is comparable to that of their desktop counterpart. Through
a large-scale analysis of a variety of security features on 10,222 web-
sites, we find that in most cases desktop sites exhibit a minimally
higher prevalence and wider-reaching coverage of these features
compared to mobile sites. As mobile sites are typically developed by
the same organization, but several years after the desktop version,
the lack of difference in the adoption and coverage of security fea-
tures and the similarities in their implementation strongly suggest
that for many organizations, security is a retroactive effort that is
applied consistently across all assets.
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A SECURITY FEATURES
The ever-increasing complexity of the modern-day web has intro-
duced a wide variety of vulnerability classes. In this section, we
give a brief summary of the most common ones and discuss some
of the mechanisms that are used to mitigate them: these are the
security features that we study in this paper.

A.1 Cross-site scripting (XSS)
The vast majority of modern websites are dynamically composed
with content originating from many different sources, such as third-
party services or information contained in the GET or POST request.
A cross-site scripting vulnerability is formed when a web page
includes content from an untrusted, attacker-controlled source
without sufficient encoding or escaping. Most commonly, the value
of a GET or POST query parameter is put directly in the response:
when the website developer did not correctly encode this value,
e.g. by replacing < with &lt;, an attacker could include a malicious
script in the query parameter. As a response to the prevalence of this
type of attack, several browser vendors have implemented a built-in
countermeasure, which is enabled by default. Website owners can
control this protection mechanism through the X-XSS-Protection
response header.

Although it is generally advised to sanitize all untrusted in-
put, several defense-in-depth mechanisms have been developed to
completely mitigate XSS attacks or minimize their impact. A well-
known instance of the latter is the HttpOnly attribute on cookies:
browsers prevent these cookies from being read by JavaScript code,
effectively safeguarding them from XSS attacks. A more extensive
defense mechanism is Content Security Policy (CSP), which can be
used by website operators to instruct their visitor’s browser which
content, e.g. scripts, can be included, thus blocking any malicious
scripts.

A.2 Cross-site request forgery (CSRF)
Cross-site request forgery (CSRF) is both very common and can
have very severe consequences, such as full account compromise.
The vulnerability is caused by improperly validating the authentic-
ity of a form submission. More precisely, attackers can replicate a
form that is found on the victim website on their own website, i.e.
a form with the same endpoint and parameters whose values are
controlled by the attacker. The most commonly advised defense
against CSRF vulnerabilities is to include a randomly generated
token, often referred to as a nonce, with each request that triggers a
change. For web forms, this token is typically included as a hidden
parameter, whose value cannot be obtained by the adversary due
to the Same-Origin Policy. Upon receiving a request, the website
then has to validate the value of this token, and otherwise abort
processing the request. As long as all forms are protected with this
mechanism, this provides a secure and complete mitigation to CSRF
attacks.

Another type of defense mechanism aims to tackle the vulnera-
bility by eliminating one of its prerequisites, namely the fact that
the cross-site request needs to be authenticated, i.e. the victim’s
cookie needs to be attached. This defense can be used by setting the
SameSite attribute on cookies, which prevents them from being
sent in a cross-origin manner. At the time of this writing, same-site

cookies are still relatively new, but currently supported by all ma-
jor desktop browsers and most mobile browsers4, despite several
implementation flaws in certain browsers [10].

A.3 Clickjacking
A web page can include other web pages in an <iframe> element,
even when these are hosted on a cross-origin domain. This func-
tionality introduced so-called clickjacking attacks, also referred to
as UI-redressing attacks. In this type of attack, the adversary creates
a malicious web page where they include a target web page that
for instance contains a button, which when clicked will perform
an action on the victim’s behalf. On mobile browsers, tricking the
user to click on a certain location may be facilitated by leveraging
tap-jacking attacks, where the adversary re-creates a part of the
visual browser environment which becomes hidden when scrolling
down. This makes the victims believe that they are interacting with
the browser application, e.g. to switch tabs, while they are actually
clicking an overlayed invisible frame [21].

Originally proposed in 2012, the X-Frame-Options response
header can be used to deter clickjacking attacks [11]. More specifi-
cally, this header can be used by website administrators to overrule
the default behavior, and prevent other websites from including
the protected web pages. Next to clickjacking, X-Frame-Options
also provides a range of other attacks that rely on framing a target
web page [7]. As such, it should be considered best practice to re-
turn this header on all endpoints, except those that are explicitly
meant to be included. Recent work by Luo et al. reported that in the
Google Chrome browser, the Allow-From directive of the X-Frame-
Options header is not supported [16]. Instead, the browser vendor
advises website owners to make use of the frame-ancestors di-
rective of Content Security Policy.

A.4 Content-sniffing vulnerabilities
This attack could be mitigated by adding the response header To
prevent attacks that exploit the browser’s content-sniffing algo-
rithm, the X-Content-Type-Options with the value nosniff can
be used. This XCTO header also prevents relative-path override
(RPO) attacks [5, 13], which abuse the fact that some websites in-
clude stylesheets from relative paths, i.e. by using ../ in the path.
A mismatch between what is considered the endpoint on the client-
side versus on the server-side, allows an adversary to inject CSS
code under certain conditions. This could be used to perform a wide
range of attacks against unwitting victims [12].

A.5 Man-in-the-middle attacks
Many recent initiatives are driving the adoption of TLS on the web,
e.g. Let’s Encrypt allows website owners to conveniently obtain a
certificate for free, resulting in a significantly increased adoption [1],
and Google Chrome is marking web pages visited over HTTP as
“Not Secure” [22]. However, there are still various things that can
go wrong in the presence of a man-in-the-middle adversary who
can actively manipulate unencrypted requests and responses. For
instance, if an HTTPS web page would include a JavaScript file
from an HTTP endpoint, a MitM attacker could still manipulate its
contents and thus execute arbitrary JavaScript on the website.
4https://caniuse.com/#feat=same-site-cookie-attribute
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Table 2: Summary of the results of our statistical analysis on pairs of desktop and mobile sites. Stars indicate statistical signif-
icance of the test scores (*: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001). The sign of the (in)direct effect indicates whether it
goes in the same (+) or opposite (-) direction as the total effect. Amediator is present if zero lies outside the confidence interval
of the indirect effect.

Mediation analysis

Wilcoxon Total effect Direct effect Indirect effect

Feature Pairs Different Direction Corr. p Size p Size p Size Confidence interval Mediator

Cross-site scripting
HTTPOnly on cookie (+) 8231 3273 desktop 0.142 0.000 (****) 0.47% 0.055 +1.13% 0.000 (****) -0.66% [-0.83, -0.51] Yes
Content-Security-Policy header (+) 10222 299 desktop 0.013 0.847 0.14% 0.105 +0.11% 0.209 +0.03% [+0.00, +0.06] Yes
Browser built-in XSS protection disabled (-) 10222 725 desktop 0.053 0.220 0.10% 0.486 +0.08% 0.578 +0.02% [-0.02, +0.06] No

Cross-site request forgery
Form with CSRF token (+) 7697 1195 desktop 0.026 0.440 0.16% 0.422 +0.12% 0.567 +0.04% [-0.11, +0.22] No

Clickjacking
X-Frame-Options header (+) 10222 1146 desktop 0.070 0.041 (*) 0.35% 0.034 (*) +0.32% 0.054 +0.03% [-0.02, +0.08] No

Content-sniffing
X-Content-Type-Options header (+) 10222 772 desktop 0.055 0.189 0.14% 0.320 +0.12% 0.415 +0.02% [-0.02, +0.07] No

Man-in-the-middle attacks
Page served over HTTPS (+) 10222 2063 desktop 0.222 0.000 (****) 2.19% 0.000 (****) +2.11% 0.000 (****) +0.08% [+0.01, +0.16] Yes
Secure on cookie (+) 8231 1312 desktop 0.263 0.000 (****) 0.85% 0.000 (****) +1.17% 0.000 (****) -0.32% [-0.41, -0.24] Yes
Strict-Transport-Security header (+) 6428 639 desktop 0.139 0.002 (**) 1.09% 0.000 (***) +1.13% 0.000 (***) -0.03% [-0.15, +0.06] No
HTTPS page with HTTP resources (-) 6428 1833 mobile 0.031 0.245 0.55% 0.038 (*) +0.61% 0.020 (*) -0.07% [-0.15, +0.01] No
Form with SSL stripping (-) 5183 201 desktop 0.203 0.012 (*) 0.25% 0.039 (*) +0.25% 0.047 (*) +0.00% [-0.03, +0.03] No
Form on HTTPS page with HTTP action (-) 6428 192 desktop 0.391 0.000 (****) 0.35% 0.001 (***) +0.38% 0.000 (***) -0.03% [-0.07, +0.00] No

Including untrusted content
sandbox on frame (+) 6893 1986 mobile 0.080 0.002 (**) 0.82% 0.000 (****) +0.53% 0.010 (*) +0.29% [+0.15, +0.48] Yes
Sub-resource integrity for script (+) 10180 374 mobile 0.060 0.312 0.01% 0.360 +0.01% 0.557 +0.00% [+0.00, +0.01] Yes

Information leakage
Referrer-Policy header (+) 10222 120 desktop 0.429 0.000 (****) 0.19% 0.000 (***) +0.18% 0.000 (***) +0.02% [-0.00, +0.04] No

Furthermore, when not all pages of a website are loaded over
HTTPS, an attacker could set up an SSL-stripping attack: the MitM
attacker sets up a secure connection with the server, and replaces all
references of https:// with http://. As such, the server is led to
believe that a secure channel is used, and the victim is led to believe
that the server does not support HTTPS. A exemplary instance of
this is when the website serves all pages over HTTP, but references
the login form with HTTPS, as the login-action would contain the
user’s password. Nevertheless, the attacker can simply perform an
SSL-stripping attack and still obtain the user’s password.

There exists several other mechanisms that can further enhance
the secure connection between a client and the web server. For
instance, the Strict-Transport-Security mechanism indicates
to the browser that this website should only be contacted over
a secure channel for a given time; this eliminates the aforemen-
tioned SSL-stripping attacks. Similarly, the Public-Key-Pinning
response header can be used to indicate that the browser should
associate only the specified public keys with the web server. When
used incorrectly, this mechanism could effectively lock out users
from a website, so it requires a significant effort to set up properly.
Finally, to ensure certain cookies are only sent over secure channels,
the Secure attribute could be set.

A.6 Including untrusted content
One of the aspects that allows the web to thrive is that web pages
are allowed to include content from any other location. As web-
sites massively include content hosted or provided by third parties,
this brings along a variety of security-related issues. For instance,
Nikiforakis et al. showed that in many cases web developers in-
cluded JavaScript files from a domain that later became available

for registration [19]. An adversary could register one of these stale
domain names and serve malicious scripts from it, thereby affecting
many users. A countermeasure that can be used to minimize the
trust that needs to be put in third-party content providers (other
than not re-registering their domain name, these could also act
maliciously or be compromised), is sub-resource integrity (SRI).
The mechanism allows websites to set the integrity attribute on
<script> elements, with the value set to the hash of the expected
content of the included script. This script is only executed when the
integrity check passes, i.e. the hash of the actual content matches
the provided hash value.

B EVALUATION OF SECURITY INDICATORS:
STATISTICAL ANALYSIS

In Table 2, we summarize the numerical results of our statistical
analysis from Section 3, for the various weaknesses and mitigation
techniques that we considered.
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