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Abstract As the web expands in size and adoption, so does the interest
of attackers who seek to exploit web applications and exfiltrate user
data. While there is a steady stream of news regarding major breaches
and millions of user credentials compromised, it is logical to assume
that, over time, the applications of the bigger players of the web are
becoming more secure. However, as these applications become resistant
to most prevalent attacks, adversaries may be tempted to move to easier,
unprotected targets which still hold sensitive user data.
In this paper, we report on the state of security for more than 22,000
websites that originate in 28 EU countries. We first explore the adoption
of countermeasures that can be used to defend against common attacks
and serve as indicators of “security consciousness”. Moreover, we search
for the presence of common vulnerabilities and weaknesses and, together
with the adoption of defense mechanisms, use our findings to estimate
the overall security of these websites. Among other results, we show how
a website’s popularity relates to the adoption of security defenses and we
report on the discovery of three, previously unreported, attack variations
that attackers could have used to attack millions of users.

1 Introduction

Over the last decade, the web has become extremely popular. Businesses heavily
depend on the web for their day-to-day operations, and billions of users interact
on social networking websites on a daily basis. As a consequence of this enor-
mous growth in popularity, the web has also drawn increased attention from
attackers. A whole range of web attacks exists in the wild, ranging from Cross-
Site Scripting (XSS), Cross-Site Request Forgery (CSRF), and SQL injection,
to the exploitation of broken authorization and session management. Moreover,
as the technologies that support the web increase in numbers and complexity,
new opportunities for exploitable vulnerabilities increase with them.

To assess a website’s security, website owners typically choose security con-
sulting firms for internal penetration testing, and code reviewing. It is difficult,
however, for outsiders like government and supervisory organizations to assess
a website’s security externally, especially when the assessment needs to be done



at a larger scale, e.g., involving a large number of websites belonging to a coun-
try, or a specific industry sector. Such an assessment may be desirable since the
citizens of each country depend more and more on certain web applications for
their daily lives. An example of a real-world equivalent is the mandatory assess-
ment of the structural safety of buildings in order to protect people from future
disasters that could have been straightforwardly avoided.

In this paper, we investigate the feasibility of external security evaluations
through a large-scale security analysis of the web. In particular, we evaluate the
security stance of popular websites in the European Union (EU), and investigate
the differences among countries.

To evaluate a website’s security, existing approaches typically focus on the
discovery of vulnerabilities in websites. For example, WhiteHat publishes yearly
reports on website security statistics [31], highlighting the ten most common
vulnerabilities, and discussing new attack vectors. Contrastingly, our approach
not only accounts for common vulnerabilities and weaknesses, but also measures
the presence of security mechanisms deployed on the investigated websites. These
mechanisms have been developed by the security community as a response to
web application attacks, making their adoption a crucial step towards a more
secure web. The presence or absence of each of these mechanisms can be passively
detected and can be used as an indicator of the “security consciousness” of each
individual site.

In addition, in order to be able to compare websites by their security posture,
we also propose a security scoring system for assessing a website’s security level,
and based on the scoring system, we present a comparative security analysis of
European websites. Finally, because of the breadth of our analysis, we report on
the discovery of novel variations of existing web application attacks. In one of
the discovered cases, an attacker can register an expired Google Code project
and serve malicious JavaScript to millions of users of sites that once trusted that
specific project for remote code.

Our findings allow the community to assess the adoption of security mech-
anisms by websites at a large scale, and also prioritize corrective action, based
on the severity of the discovered issues. Moreover, we list the challenges that we
faced in our experiment, and provide possible directions towards future research
in the area.

2 Data Collection

2.1 Dataset

For our experiment, we selected popular websites from the EU as the targets,
to evaluate website security, and investigate the presence of potential differences
between countries. The 28 member states in the EU represent a diverse set
of communities, each with their own demographic characteristics. For each EU
country, we selected the top 1,000 websites ending with a country code top-level
domain (ccTLD) from Alexa’s list of the top 1 million sites. For example, 1,000
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websites ending with the Belgian ccTLD ‘.be’ are extracted to represent the
Belgian web. Note that several small EU countries (such as Luxembourg and
Malta) do not have 1,000 websites in Alexa’s top 1 million list, so we end up
with a few countries having less than 1,000 websites in our dataset. We then
obtained up to 200 webpage URLs for each website by querying the Bing search
engine [1] for the popular webpages of each website. In total, we analyzed more
than 3 million webpages for 22,851 EU websites with an average of 141 webpages
per website.

2.2 Crawler setup

After the webpage URLs are obtained, PhantomJS [5], a headless browser, is used
to visit the URLs and retrieve data from webpages. By loading every webpage
within PhantomJS, we mimicked the behavior of a regular visitor using a Chrome
browser. In order to crawl a large number of webpages in reasonable time, we
run the experiment in a distributed fashion using 60 networked machines. As a
result, our crawling experiment took approximately five days.

3 Security Scoring System

In order to compare the security level among different websites, and among dif-
ferent EU countries (represented by the websites of each country), we developed
a security scoring system that gives quantitative security scores for each website.
The security scores for a website consist of two parts: a positive score to represent
the defense mechanisms adopted by the website (such as the X-Frame-Options

and Content-Security-Policy headers), and a negative score for vulnerabili-
ties or weaknesses (such as vulnerable remote JavaScript inclusions and insecure
SSL implementations) found on it. For each defense mechanism and vulner-
ability/weakness, the security scoring system assigns a weighted positive and
negative score. The overall positive and negative score for a website, is obtained
by summing up each weighted positive and negative score respectively.

Due to our ethically-guided choice of conducting passive analysis for the
majority of our tests, our search was limited to eight defense mechanisms, and ten
vulnerabilities/weaknesses for each website. In principle, however, the security
scoring system is scalable to more measurements. In the following sections, we
briefly describe these defense mechanisms and vulnerabilities/weaknesses and
elaborate on the scoring system we adopted.

3.1 Defense mechanisms

In our security assessment for defense mechanisms, we searched whether each
website had adopted one or more of the following eight mechanisms:

– HTTP Strict-Transport-Security (HSTS): HSTS is a web security pol-
icy mechanism where a web server can force complying browsers to interact
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with it using only HTTPS connections [15]. By sending out the HSTS policy
via an HTTP response header named Strict-Transport-Security, a web
server specifies a period of time during which the user’s browser is instructed
that all requests to that website need to be sent over HTTPS, regardless of
what a user requests. As a result, HSTS can effectively thwart SSL-striping
attacks and other Man-in-the-Middle (MitM) attacks [19,22].

– Secure Cookies: Website operators can make use of the Secure flag when
sending out Set-Cookie headers. By doing so, the scope of a cookie is limited
to only secure channels [10], which makes the cookie less likely to be stolen
via eavesdropping.

– Content Security Policy (CSP): To mitigate a wide range of injec-
tion vulnerabilities, such as Cross-Site Scripting (XSS), a website opera-
tor can make use of the CSP mechanism. CSP provides a standard HTTP
header that allows website owners to declare approved sources of content
that browsers should be allowed to load on any given webpage [27]. When-
ever a requested resource originates from a source that is not defined in the
policy, it will not be loaded [28]. Hence, if the policy does not allow in-line
JavaScript, then even if an attacker is able to inject malicious JavaScript in
the webpage, the code will not be executed.

– HttpOnly Cookies: By default, cookies are accessible to JavaScript code,
which allows attackers to steal a user’s cookies in an XSS attack. To pro-
tect against the theft of cookies, a website operator can use the HttpOnly

flag on cookies. An HttpOnly cookie will be used only when transmitting
HTTP/HTTPS requests, making them unavailable to client-side JavaScript.

– X-Frame-Options (XFO): When an attacker is able to load a website,
or part of a website in a frame or iframe element, the website might be
vulnerable to ClickJacking attacks. More precisely, by redressing the user
interface, an attacker can trick the user into clicking on the framed page while
the click is intended for the bottom-level page [18]. To avoid ClickJacking
attacks, the XFO HTTP response header [24] can be used to instruct a user’s
browser whether a certain page is allowed to be embedded in a frame.

– Iframe sandboxing: The sandbox attribute for the iframe element, intro-
duced in HTML5, enables a set of extra restrictions on any content loaded
in a frame. By specifying the sandbox value, a website operator can instruct
the browser to load a specific frame’s content in a low-privilege environment,
allowing only a limited subset of capabilities to be made available to that
frame [30].

– CSRF Tokens: The most popular defense for Cross-Site Request Forgery
(CSRF) attacks is the inclusion of a secret token with each request and vali-
dation of that token at the server side [11]. This secret token, often referred to
as a “nonce”, should be pseudo-random and of a certain length so it cannot
be guessed or brute-forced by an attacker. To check for nonces, we searched
for forms that contained a hidden form element that was most likely used
as a nonce. More specifically, form elements were marked as nonces when
their name contained the keywords “token”, “nonce”, or “csrf”, and when
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their value was a long alpha-numerical string. These form elements were then
manually verified in order to filter out any false positives.

– X-Content-Type-Options: Internet Explorer has a MIME-sniffing feature
that will attempt to determine the content type for each downloaded re-
source. This feature, however, can lead to security problems for servers host-
ing untrusted content. To prevent Internet Explorer from MIME-sniffing,
thus reducing exposure to attacks, a web server can send the X-Content-

Type-Options response header with the nosniff value .

Apart from the sandboxing of frames and CSRF tokens, all the above defense
mechanisms are communicated to the browser via HTTP response headers, and
hence can be discovered straightforwardly by parsing a server’s response headers.
For the sandboxing of frames and the presence of CSRF tokens, we searched for
iframe and form elements in the response body of each crawled webpage.

3.2 Vulnerabilities and Weaknesses

For the assessment of vulnerabilities and weaknesses, we focus on the following
ten measurements:

– Vulnerable Remote JavaScript Inclusion: A website that chooses to
include JavaScript from untrustworthy third-party sources opens itself up to
a range of security issues. Recent research by Nikiforakis et al. [21], identi-
fied four different types of vulnerabilities that are related to the practice of
unsafe remote JavaScript inclusions. In our assessment, we searched for the
most dangerous of these vulnerabilities, called “Stale Domain-name-based
Inclusions”, where remote JavaScript is requested from a domain that has
expired and is available for registration, which means the attacker can buy
the domain and use it to serve malicious JavaScript.

– Mixed-content Inclusion: When migrating to HTTPS, many websites
fail to fully update their applications, resulting in mixed-content inclusions
where the main webpage is sent over a secure HTTPS channel, while some
additional content included on that page, such as images and scripts, are
delivered over non-secured HTTP connections. As a result, an active network
attacker can attack the TLS-enabled website by intercepting and modifying
any of the mixed content that is loaded over HTTP [13].

– SSL-stripping Vulnerable Form: For performance reasons, some web-
sites only implement HTTPS for certain webpages that contain sensitive
information (such as a log-in page), which may result in forms vulnerable to
SSL stripping [19]. In this scenario, the form is displayed on an HTTP page,
however the form action points to an HTTPS link. As a result, a MitM at-
tacker can replace all HTTPS form links on the HTTP page to HTTP links,
which will allow the attacker to intercept the form data sent from the user’s
browser.

– Insecure SSL Implementation: SSL is important for website owners since
it provides end-to-end security. At the same time, however, it turns out that
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it is not easy to deploy SSL correctly. According to Qualys’ latest SSL survey
of the most popular websites in December 2013, about half of the HTTPS
websites have security issues associated with their SSL implementations [6].
In our assessment, we use a fast SSL scanner called sslyze [7] to search for
SSL implementation issues including the support of SSL v2.0, use of weak
ciphers, and the vulnerability to the recently discovered BEAST [14] and
CRIME [23] attacks.

– Weak Browser XSS Protection: Most modern browsers include secu-
rity mechanisms to protect a user against reflected Cross-Site Scripting at-
tacks [20], and these features are, in general, enabled by default. While web
servers can instruct a user’s browser to disable this protection by means
of the X-XSS-Protection response header, we consider such behavior as a
weakness of the website, because disabling it might allow an attacker to
successfully exploit an, otherwise unexploitable, XSS vulnerability.

– HTTP Parameter Pollution (HPP): When a website fails to properly
sanitize user input, they might be vulnerable to HPP attacks. These attacks
consist of injecting encoded query string delimiters into other existing pa-
rameters. By doing so, an attacker is able to compromise the application
logic to perform client-side and server-side attacks. In our assessment, we
searched for HPP vulnerabilities in a manner similar to the methodology of
Balduzzi et al. [9].

– Outdated Server Software: It is important to keep web servers up-to-
date, since an outdated server usually contains vulnerabilities that may lead
to attacks. In our assessment, we searched for outdated server software for
popular web servers including Apache, Microsoft-IIS, and Nginx.

– Outdated Content Manage Systems (CMSs): Many popular websites
nowadays are built using a CMS, since CMSs allow non-technical users to
build dynamic websites, and are usually free of charge. Similar to web servers,
it is also recommended to keep a CMS up-to-date, as outdated CMSs often
contain vulnerabilities. In our assessment, we looked for outdated CMSs for
websites using WordPress, Joomla, vBulletin, and MediaWiki.

– Information Leakage: Many websites generate error messages and display
them to users, which may reveal implementation details or information that
is useful to an attacker. In our assessment, we searched for various categories
of information leakage including SQL error messages, website directory list-
ings, IIS error messages, PHP/ASP/JSP source code and error messages.

– Sensitive Files: A website may accidentally expose sensitive files such as
configuration files and source code to the public, when moving files from
the development server to the production server. The degree of vulnerability
depends on the sensitive file that is exposed, ranging from information disclo-
sure, to disclosure of source code containing credentials. In our assessment,
we searched for the following files that were most likely to contain sensitive
information: phpinfo.php or test.php, containing system information from
the phpinfo() function, website configuration files, such as Web.config, and
two version control system folders, namely .svn/ and .git/.
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Most of the aforementioned vulnerabilities and weaknesses can be discov-
ered through passive analysis with PhantomJS visiting webpages, except for the
finding of HPP vulnerabilities and sensitive files, where we actively scanned a
limited number of webpages from each website, taking the necessary precautions
not to stress or harm websites.

3.3 Scoring System Details

The scoring system used to estimate the state of security of websites is based
on the Common Weakness Scoring System (CWSS) [3]. The CWSS provides a
quantitative measurement of security weaknesses in software applications, and
is mainly used to prioritize the remediation of reported weaknesses. In essence,
the score appointed to a weakness by the CWSS aims to reflect the impact
and likelihood of exploitation by adversaries. For instance, not “escaping” user-
controlled data in an HTML document could lead to Cross-Site Scripting attacks,
and may allow an attacker to extract sensitive user information. This weakness
obviously has a high impact and is remotely exploitable; thus it will receive a
higher score than, say, an insecure SSL implementation weakness.

The reason for using the CWSS over other scoring systems as a base for
our scoring system is twofold. First, the CWSS is a well-established and com-
monly used mechanism to give a quantitative score to weaknesses. It has been
extensively reviewed, which gives, to a certain extent, a guarantee that the score
appointed to a weakness reflects the magnitude of the induced threat. Second,
the CWSS gives scores to weaknesses, rather than to actual vulnerabilities as
is done in the Common Vulnerability Scoring System (CVSS) [2]. This is im-
portant because most features we analyzed are security indicators rather than
actual vulnerabilities.

The CWSS uses 18 different factors across three metric groups to calculate
the total score for a weakness. The first group, named the “Base Finding” group,
reflects the risk of the weakness, the finding confidence and the presence of built-
in defense mechanisms. The second group, called the “Attack Surface” group,
reflects the exploitability of a weakness. A vulnerability which is easy to exploit,
such as a stale JavaScript inclusion, will consequently receive a higher score for
this group. The last group, named the “Environmental” group, indicates, among
others, the impact on the business in case the weakness is exploited, as well as
the likelihood of discovery and exploitation. Each group is appointed a subscore
which constitutes of a weighted score of its factors. The total score appointed to
a weakness is calculated by multiplying the score for the “Base Finding” group
(value between 0 and 100) by the two other groups (values between 0 and 1).

In order to give a metric to security features on a similar scale as weaknesses,
the CWSS was also used to appoint scores to these defense mechanisms. As the
CWSS only works for weaknesses, we calculated the score for security measures
by determining the metric for the vulnerability or weaknesses they attempt to
prevent. Additionally, we took the effectiveness of the countermeasure into ac-
count, as security features that completely block certain attacks should receive
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Defense Mechanism Score

Content Security Policy 58.93
X-Frame-Options 45.21
HTTP Strict-Transport-Security 33.52
CSRF tokens 32.73
Secure cookies 31.84
HttpOnly cookies 28.21
Iframe sandboxing 25.32
X-Content-Type-Options 8.02

Vulnerabilities and Weaknesses Score

Vulnerable remote JavaScript inclusion 67.50
Sensitive files 41.81
SSL-stripping Vulnerable Form 30.16
X-XSS-Protection 28.33
Outdated CMS 18.30
Insecure SSL implementation 18.10
HTTP Parameter Pollution 18.06
Mixed-content inclusions 13.42
Information leakage 9.44
Outdated Server Software 8.71

Table 1: Calculated scores for defense mechanisms and vulnerabilities

a better score. For instance, the HttpOnly flag on cookies may prevent sensi-
tive cookies to be stolen in Cross-Site Scripting attacks, but it will not mitigate
all consequences of these attacks, something that a properly written Content
Security Policy may do.

Table 1 shows the score appointed to each defense mechanism and weak-
ness. Due to reasons of brevity, we limit the discussion of the rationale for the
calculated scores to one example. As can be seen in the table, the vulnerable in-
clusion of remote JavaScript received the highest score (67.50). The high impact,
i.e., the execution of arbitrary JavaScript code on multiple web pages, and the
ease of exploitability, i.e., the registration of a stale domain name, are the main
factors that contribute to this high score. Additionally, no control mechanisms
(e.g. Content Security Policy) were found on the vulnerable websites that at-
tempt to mitigate this vulnerability. Consequently, a score of 90 was calculated
for the “Base Finding” group subscore. As victims will be exploited upon visit-
ing the vulnerable web site, a score of 1 was appointed to the “Attack Surface”
group. The score for the “Environmental” group is 0.75. The main factor that
contributed to this score is the business impact, which is mostly case-specific.
While the execution of arbitrary JavaScript code may have a very high impact
on security-sensitive websites (e.g. a banking website), the potential impact on
a purely informational website that stores no sensitive data is considerably less.
The total score, 67.50, is then calculated by multiplying the three subscores (90
* 1 * 0.75).
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Security mechanism # of websites % of websites
Estimated year

of adoption

HttpOnly cookie 7,658 33.51 2007
CSRF token 3,815 16.70 NA
Secure cookies 1,217 5.33 2007
X-Frame-Options 1,029 4.50 2008
X-Content-Type-Options 467 2.04 2008
Strict-Transport-Security 116 0.50 2010
Content Security Policy 13 0.06 2011
Iframe sandboxing 10 0.04 2010

Table 2: Results from the analyzed websites that enable security features

4 Findings

4.1 General findings

Out of the 22,851 analyzed websites, we found that 10,539 (46.12%) enabled at
least one security feature. As can be seen in Table 2, the most popular defense
mechanism is the HttpOnly attribute on cookies, which was present in 33.51% of
the evaluated websites. This defense mechanism is followed in popularity by the
presence of a CSRF token in forms, which was found in 16.70% of the websites.
Interestingly, these two most popular security features are mitigations for the
most critical web application flaws according to the OWASP Top 10 project [4].
This table also shows that, in general, the popularity of a defense mechanism is
related to the time it was adopted by popular browsers, i.e., the older a security
feature, the more widely it is used.

In our evaluation, we found that 12,885 (56.39%) websites contained at least
one vulnerability or weakness. Table 3 shows the distribution of the number of
websites found to be vulnerable. While only 5,113 websites provided at least one
page over HTTPS, we found that the majority (80.32%) had content originating
from an insecure channel on their website, or had SSL implementation issues.
Likewise, although we only evaluated 17,910 websites for the presence of HTTP
Parameter Pollution (HPP) vulnerabilities, we found 15.24% of these websites to
be vulnerable. As HPP is very closely related to XSS in the sense that they are
both caused by improper encoding of certain characters, we manually analyzed a
subset of the webpages vulnerable to HPP for XSS vulnerabilities. This showed
us that approximately 75% of the websites vulnerable to HPP are also vulnerable
Cross-Site Scripting attacks.

4.2 Incorrect security-header usage

By making use of headers, website administrators are capable of instructing a
user’s browser to enable a certain security feature. Browsers, however, require
the value of the security-header to be correct. Values that are incorrect, for
example headers containing a typing error or headers with incorrect syntax,
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Vulnerability # of websites % of websites

Outdated server Software 6,412 28.06
Mixed-content inclusion 3,442 15.06
SSL-stripping Vulnerable Form 2,884 12.62
HTTP Parameter Pollution 2,731 11.95
Outdated CMS 2,041 8.93
Insecure SSL implementation 1,945 8.51
Information leakage 1,231 5.39
Sensitive files 1,068 4.67
Vulnerable remote JS inclusion 91 0.40
X-XSS-Protection 91 0.40

Table 3: Results from the analyzed websites that contain vulnerabilities

will be ignored by the browser. The presence of such headers in websites is a
strong indication that the website administrator is under the impression that
he successfully secured his website. Nonetheless, if the security-header contains
a syntactical or typographical error, adversaries might be able to successfully
exploit a vulnerability on a website.

In our analysis, we found several instances where the website operator tried to
protect his website against ClickJacking attacks by using the X-Frame-Options

header, but failed to do so by using an incorrect directive, for instance specifying
SAME-ORIGIN, instead of the correct SAMEORIGIN directive.

Additionally, we found that 15 out of 116 (12.93%) analyzed websites that
make use of the Strict-Transport-Security header to prevent SSL-stripping
attacks, used the header in an improper fashion. The majority of these websites
sent the Strict-Transport-Security header over an HTTP connection, with-
out referring the user to an SSL-connection. Since browsers will ignore HSTS
headers that are sent over an unencrypted channel, users of these websites can
still fall victim to SSL-stripping attacks. The remainder of websites that im-
plemented HSTS incorrectly, either forgot the max-age directive, or set this
directive to the value 0, which signals the user’s browser to delete the HSTS
policy associated with the website.

4.3 Security by Alexa rank

As the set of evaluated websites is distributed over the Alexa’s list of the top
1 million websites, we evaluated how the rank of a website relates to the score
we appoint it. We found that on average, the rank of a website is positively
correlated with the positive score we appoint it, i.e., a high-ranked website is
more likely to have a relatively high positive score. Contrastingly, we found that
the negative score of a website is unrelated to its popularity according to Alexa.
This indicates that popular websites try to improve their security by the adoption
of defense mechanisms, rather than by tackling vulnerabilities. Figure 1 depicts
the relation between the security score and the Alexa rank. Each entry coincides
with the average positive or negative metric of the evaluated websites that fall
within a range of 10,000 Alexa ranks.
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Figure 1. Average metric by analyzed websites grouped by 10,000 Alexa entries

Additionally, we found that, in general, there is no correlation between the
positive metric and negative score of a website, which strengthens the indication
that websites try to improve their security by adding security mechanisms in
an ad-hoc fashion. Moreover, we found that a large number of websites apply a
certain defense mechanism to a limited fraction of the URLs we visited, e.g. the
majority of websites that make use of the X-Content-Type-Options header to
prevent XSS attacks in Internet Explorer due to MIME sniffing, only add the
header to a small fraction of their pages.

4.4 Security by country

We found that the scores for websites located in different countries were similar.
Figure 2 shows the cumulative distribution function of both the positive as well
as the negative score for websites of a set of four randomly selected countries.
From this set, Germany has more websites with a higher positive score than the
other countries. However, the same country scores worse than the rest on the
negative score. This again shows that there is no relation between the number
of enabled security features and the number of weaknesses or vulnerabilities we
were able to find on a website.

The variance of scores between different countries are most likely due to
the unequal distribution of the countries’ websites over the Alexa rank. The
distribution of Alexa rank for the subset of four countries is shown in Figure 3.
Compared to the distribution of the positive score, it is clear that the countries
with the most high-ranked websites have a better positive score. This indicates
that, in general, the security of a website is unrelated to its geographical location
or the policies its hosting country may have.
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Figure 2. Distribution of positive and negative score for several countries’ websites

4.5 Novel attack techniques

In the course of our analysis, we encountered a new attack technique in the Cross-
Origin Resource Sharing mechanism as well as two variations on the insecure
inclusion of remote JavaScript code on a webpage. Both are related to remote
trust relations in the sense that the website operator trusts a certain domain or
URL to be benign, which may become malicious in the future.

By sending out the Access-Control-Allow-Origin header, a website oper-
ator can instruct a browser to allow a third-party website to make XHR-requests
towards his website and read out the result. When the Access-Control-Allow-

Credentials header is included as well, these requests can be authenticated. It
is in the best interest of a website administrator to only allow trusted websites
to extract the response of an XHR-request targeting his website. Interestingly,
we found a case where a website sent out the Access-Control-Allow-Origin

containing a .local domain. This allows an attacker to trick a user on the local
network in visiting his webpage located at the .local domain. The attacker is
then able to make the victim’s browser send XHR-requests to the vulnerable
website while being able to read out CSRF-tokens from forms.

In the aforementioned work by Nikiforakis et al. [21], the authors analyzed
the inclusion of JavaScript files from expired domains. In the course of our anal-
ysis, we encountered two variations on this type of attack. More specifically, we
found that several websites remotely include JavaScript files from domains that
were marked as “for sale” by their owner on sedo.com, a large domain market-
place. Similar to the attack described by the authors, an attacker is able to buy
such a domain, and serve malicious JavaScript to unsuspecting users. The sec-
ond variation on this type of attack occurs when websites include JavaScript files
directly from project hosting websites, such as GitHub or Google Code. The files
hosted on these services are linked to a project or a user. However, upon deletion,
that project or account, becomes again available for registration. This way, an
adversary is able to host malicious JavaScript, which may be included by a large
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Figure 3. Distribution of Alexa rank for several countries

set of websites. To show the importance of this type of attack, we registered
a stale project on Google Code, and made available the last available version
of project’s JavaScript files, with a minor addition which allowed us to analyze
the number of including websites and affected users. During a month’s time, we
registered a total of 3,879,701 requests, originating from 1,104,497 unique IP ad-
dresses. In total, there were 3,400 websites, including a prominent Chinese news
website, which directly included JavaScript files from this Google Code project.
In every single one of these requests, an attacker could have have served mali-
cious JavaScript that steals a user’s cookies, exfiltrates private user information
and even attempts to launch a drive-by download.

4.6 Miscellaneous

In our analysis, we found that the presence of certain security features, such
as the HttpOnly attribute in the Set-Cookie header, is more common in web-
sites that are powered by frameworks which facilitate the system-wide usage of
these security features [25]. More precisely, through the X-Powered-By header
we found that although the majority (49.53%) of the analyzed websites are pow-
ered by PHP, only 16.36% of these websites enable the HttpOnly attribute. The
second most popular framework is ASP.NET, used by 22.80% of the crawled
websites. Interestingly, we found that 54.74% of these ASP.NET websites enable
HttpOnly (three times as much as PHP sites).
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5 Limitation and Challenges

5.1 Accuracy of passive analysis

Due to legal and ethical considerations, our analysis of vulnerabilities in websites
was limited to a passive analysis, with a few exceptions. Consequently, the results
described in the previous section only show an estimation on the state of security
of European websites. In order to assess the accuracy of these estimates, we
compared the scores of websites likely to be insecure, to websites expected to be
secure. The set of most-likely vulnerable websites consisted of websites with a
Cross-Site Scripting vulnerability which was publicly known and had not been
patched in over one year.1 The set of websites probable to be secure, was made
up from a set of 20 respectable banking websites. This comparison showed that
the average positive score for the known-vulnerable set (35.21) was lower than
that of the set of banking websites (41.62). Also the average negative score,
which was 27.22 on the insecure set and 12.80 on the probably secure websites,
indicates that, despite the fact that only a fraction of a website’s state of security
could be assessed, we were still able to differentiate between vulnerable and
secure websites. At the same time, we are aware of the coarse-granularity of our
analysis and we highlight the antithesis between the invasiveness of an external
security assessment, and the coverage obtained by it. It would be worthwhile to
investigate whether website administrators would be willing to consent to a more
invasive security assessment, in return for obtaining the results free of charge.

5.2 Scoring system

In order to evaluate the general state of security of a website, we developed a
scoring system based on CWSS, as was described in Section 3.3. However, this
scoring system is subject to two types of limitations. Firstly, the total positive
score assigned to a website originates from an individually assigned score of eight
security features, while the total negative score is derived from a score attributed
to ten potential weaknesses and vulnerabilities. As a result, the positive score
for a website is on a different scale from the negative score. This prevents us
from being able to compare the positive score, to the negative score. Moreover,
as the total score appointed to a website originates from a limited set of factors,
the total score may not always reflect the actual state of security of a website.
However, as we evaluate diverse aspects which are highly related to a website’s
security, we believe that our scoring system provides a good estimate on the
general state of security of a website.

The metric appointed to each weakness and security measure is derived from
a list of 18 factors, some of which are subject to the opinion of the authors or are
often case-specific. For instance, the impact of exploiting a certain vulnerability
may differ based on the type of website. In order to account for these differences,
each metric was calculated for a general website. Consequently, the appointed

1 http://www.xssed.com
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metrics are not website-specific and the score of one feature is relative to the other
scores. This allows us to appoint a comparable score which gives an estimation
of the state of security for each tested website.

6 Related Work

To the best of our knowledge, there exists no large-scale analysis which evaluates
security features as well as weaknesses in a broad range of websites. Nonetheless,
several evaluations on the presence of specific vulnerabilities in web applications
have been carried out. For instance, WhiteHat Security evaluates, on a yearly
basis, the data on several types of vulnerabilities they collect from their cus-
tomers [31]. Contrastingly to our research, their security analysis has the per-
mission of their clients and is thus more aggressive, which enables them to find
additional types of vulnerabilities, such as SQL Injections and XSS errors.

Another large-scale evaluation of websites in a specific demographic area is
presented in research by Alarifi et al. [8], that evaluates the security of popular
Arabic websites. Their analysis explores the presence of phishing and malware
pages in 7,000 domains. To detect malicious scripts hosted on webpages, they
make use of APIs offered by known website scanners. Kals et al. developed the
SecuBat tool, which was used for an automated detection of XSS and SQL Injec-
tion vulnerabilities in a selection of 100 security-sensitive websites [16]. Similarly,
Zeller et al. performed an analysis on the presence of CSRF vulnerabilities in
popular websites [32], finding vulnerabilities in four major websites. Nikiforakis
et al. presented a large-scale analysis of remote JavaScript inclusions [21]. Ad-
ditionally, in their paper, they also proposed a metric called Quality of Main-
tenance (QoM) to characterize a website’s security consciousness. Their QoM
adopts several features such as HttpOnly cookies, X-Frame-Options, that are
also included in our assessment. As earlier discussed, the presence of these de-
fensive mechanisms give an indication for a website’s security.

Vasek and Moore found that some website features, such as server software
and CMSs, can serve as positive risk factors for webserver compromise [29]. Their
study shows that some server types and CMS types are more risky than others
(e.g., servers running Apache and Ngnix are more likely to be compromised than
those running Microsoft IIS).

Lekies et al. performed a large-scale detection of DOM-based XSS vulnera-
bilities in the top 5,000 Alexa websites [17]. In their evaluation, they found a
total of 6,167 unique vulnerabilities distributed over 480 domains, demonstrating
that 9.6% of the evaluated websites are vulnerable to this type of attack. Son et
al. analyzed the implementation of the HTML5 postMessage mechanism in the
Alexa top 10,000 [26]. They found that 84 popular websites were exploitable to
several attacks, including XSS and content injection, due to the lack of proper
checks in the cross-origin communication mechanism.

A feature that we did not include in our study was the security of a site’s
hosting provider. Sites situated on shared hosting environments are expected to
be at a greater risk of compromise, since a vulnerability of another co-located
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tenant can be used to attack the entire server. Canali et al. recently investigated
the ability of shared hosting providers to detect compromised sites hosted on
their servers [12], finding that the vast majority of providers cannot detect even
the most straightforward attacks.

7 Conclusion

Websites have become the main target for numerous attacks originating from
adversaries who attempt to monetize a user’s sensitive data and resources. In
order to protect themselves from this threat, website operators are provided with
several security mechanisms to defend against a wide range of vulnerabilities. In
this paper, we evaluated the usage of security features, as well as the presence of
vulnerabilities and weaknesses, in 22,851 EU websites. We found that a large part
of the evaluated websites showed weaknesses, and some even contained severe
vulnerabilities. Moreover, we discovered that the state of security of a website
is unrelated to its demographic characteristics. In spite the fact that popular
websites are more likely to prevent attacks by implementing security features, we
found that the presence of weaknesses and vulnerabilities is unrelated to a site’s
popularity. We hope that our study can inspire similar systems at a country- or
sector-level, and help the owners of sites to discover and prioritize the adoption
of security mechanisms, and the correction of existing vulnerabilities.
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